Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2017, Volume 13, Number 3, Pages 283–313
DOI: https://doi.org/10.15407/mag13.03.283
(Mi jmag674)
 

This article is cited in 1 scientific paper (total in 1 paper)

Integral conditions for convergence of solutions of non-linear Robin's problem in strongly perforated domain

E. Ya. Khruslova, L. O. Khilkovab, M. V. Goncharenkoa

a B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv 61103, Ukraine
b Institute of Chemical Technologies of Volodymyr Dahl East Ukrainian National University, 31 Volodymyrska Str., Rubizhne 93009, Ukraine
Full-text PDF (526 kB) Citations (1)
References:
Abstract: We consider a boundary-value problem for the Poisson equation in a strongly perforated domain $\Omega^\varepsilon =\Omega\setminus F^\varepsilon \subset R^n$ ($n\geqslant 2$) with non-linear Robin's condition on the boundary of the perforating set $F^\varepsilon$. The domain $\Omega^\varepsilon$ depends on the small parameter $\varepsilon>0$ such that the set $F^\varepsilon$ becomes more and more loosened and distributes more densely in the domain $\Omega$ as $\varepsilon\to0$. We study the asymptotic behavior of the solution $u^\varepsilon(x)$ of the problem as $\varepsilon\to0$. A homogenized equation for the main term $u(x)$ of the asymptotics of $u^\varepsilon(x)$ is constructed and the integral conditions for the convergence of $u^\varepsilon(x)$ to $u(x)$ are formulated.
Key words and phrases: homogenization, stationary diffusion, non-linear Robin's boundary condition, homogenized equation.
Received: 27.05.2017
Bibliographic databases:
Document Type: Article
MSC: 35Q70
Language: English
Citation: E. Ya. Khruslov, L. O. Khilkova, M. V. Goncharenko, “Integral conditions for convergence of solutions of non-linear Robin's problem in strongly perforated domain”, Zh. Mat. Fiz. Anal. Geom., 13:3 (2017), 283–313
Citation in format AMSBIB
\Bibitem{KhrKhiGon17}
\by E.~Ya.~Khruslov, L.~O.~Khilkova, M.~V.~Goncharenko
\paper Integral conditions for convergence of solutions of non-linear Robin's problem in strongly perforated domain
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2017
\vol 13
\issue 3
\pages 283--313
\mathnet{http://mi.mathnet.ru/jmag674}
\crossref{https://doi.org/10.15407/mag13.03.283}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410993200005}
Linking options:
  • https://www.mathnet.ru/eng/jmag674
  • https://www.mathnet.ru/eng/jmag/v13/i3/p283
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :38
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024