Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2017, Volume 13, Number 2, Pages 154–172
DOI: https://doi.org/10.15407/mag13.02.154
(Mi jmag667)
 

This article is cited in 1 scientific paper (total in 1 paper)

Homogenized model of non-stationary diffusion in porous media with the drift

M. Goncharenkoa, L. Khilkovab

a B.Verkin Institute for Low Temperature Physics and Engineering, of the National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv 61103, Ukraine
b Institute of Chemical Technology of Eastern Ukrainian National University, 31 Volodymyrska Str., Rubizhne 93009, Ukraine
Full-text PDF (307 kB) Citations (1)
References:
Abstract: We consider an initial boundary-value problem for a parabolic equation describing non-stationary diffusion in porous media with non-linear absorption on the boundary and the transfer of the diffusing substance by fluid. We prove the existence of the unique solution for this problem. We study the asymptotic behavior of a sequence of solutions when the scale of microstructure tends to zero and obtain the homogenized model of the diffusion process.
Key words and phrases: homogenization, non-stationary diffusion, non-linear boundary condition, homogenized model.
Received: 01.06.2016
Revised: 16.11.2016
Bibliographic databases:
Document Type: Article
MSC: 35Q74
Language: English
Citation: M. Goncharenko, L. Khilkova, “Homogenized model of non-stationary diffusion in porous media with the drift”, Zh. Mat. Fiz. Anal. Geom., 13:2 (2017), 154–172
Citation in format AMSBIB
\Bibitem{GonKhi17}
\by M.~Goncharenko, L.~Khilkova
\paper Homogenized model of non-stationary diffusion in porous media with the drift
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2017
\vol 13
\issue 2
\pages 154--172
\mathnet{http://mi.mathnet.ru/jmag667}
\crossref{https://doi.org/10.15407/mag13.02.154}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403877800003}
Linking options:
  • https://www.mathnet.ru/eng/jmag667
  • https://www.mathnet.ru/eng/jmag/v13/i2/p154
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :32
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024