Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2017, Volume 13, Number 1, Pages 82–98
DOI: https://doi.org/10.15407/mag13.01.082
(Mi jmag664)
 

This article is cited in 3 scientific papers (total in 3 papers)

Distribution of eigenvalues of sample covariance matrices with tensor product samples

D. Tieplova

V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine
Full-text PDF (201 kB) Citations (3)
References:
Abstract: We consider the $n^2\times n^2$ real symmetric and hermitian matrices $M_n$, which are equal to the sum $m_n$ of tensor products of the vectors $X^\mu=B(Y^\mu\otimes Y^\mu)$, $\mu=1,\dots,m_n$, where $Y^\mu$ are i.i.d. random vectors from $\mathbb{R}^n(\mathbb{C}^n)$ with zero mean and unit variance of components, and $B$ is an $n^2\times n^2$ positive definite non-random matrix. We prove that if $m_n/n^2\to c\in[0,+\infty)$ and the Normalized Counting Measure of eigenvalues of $BJB$, where $J$ is defined below in (2.6), converges weakly, then the Normalized Counting Measure of eigenvalues of $M_n$ converges weakly in probability to a non-random limit, and its Stieltjes transform can be found from a certain functional equation.
Key words and phrases: random matrix, sample covariance matrix, tensor product, distribution of eigenvalues.
Received: 23.12.2015
Revised: 30.04.2016
Bibliographic databases:
Document Type: Article
MSC: 15B52
Language: English
Citation: D. Tieplova, “Distribution of eigenvalues of sample covariance matrices with tensor product samples”, Zh. Mat. Fiz. Anal. Geom., 13:1 (2017), 82–98
Citation in format AMSBIB
\Bibitem{Tie17}
\by D.~Tieplova
\paper Distribution of eigenvalues of sample covariance matrices with tensor product samples
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2017
\vol 13
\issue 1
\pages 82--98
\mathnet{http://mi.mathnet.ru/jmag664}
\crossref{https://doi.org/10.15407/mag13.01.082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396541900004}
Linking options:
  • https://www.mathnet.ru/eng/jmag664
  • https://www.mathnet.ru/eng/jmag/v13/i1/p82
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :64
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024