Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2017, Volume 13, Number 1, Pages 3–34
DOI: https://doi.org/10.15407/mag13.01.003
(Mi jmag661)
 

On the abstract inverse scattering problem for trace class perturbations

R. Hatamleha, V. A. Zolotarevb

a Department of Mathematics, Jadara University, Irbid-Jordan
b B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave., Kharkiv 61103, Ukraine
References:
Abstract: The scattering problem for a pair of selfadjoint operators $\{L_0, L\}$, where $L - L_0$ is of trace-class, is studied. The explicit form of the scattering matrix and its properties are defined. The equation for the inverse problem is obtained.
Key words and phrases: scattering matrix, Friedrichs–Faddeev model, inverse scattering problem.
Received: 15.07.2015
Revised: 03.11.2015
Bibliographic databases:
Document Type: Article
MSC: 47A45
Language: English
Citation: R. Hatamleh, V. A. Zolotarev, “On the abstract inverse scattering problem for trace class perturbations”, Zh. Mat. Fiz. Anal. Geom., 13:1 (2017), 3–34
Citation in format AMSBIB
\Bibitem{HatZol17}
\by R.~Hatamleh, V.~A.~Zolotarev
\paper On the abstract inverse scattering problem for trace class perturbations
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2017
\vol 13
\issue 1
\pages 3--34
\mathnet{http://mi.mathnet.ru/jmag661}
\crossref{https://doi.org/10.15407/mag13.01.003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000396541900001}
Linking options:
  • https://www.mathnet.ru/eng/jmag661
  • https://www.mathnet.ru/eng/jmag/v13/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024