Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2016, Volume 12, Number 4, Pages 287–301
DOI: https://doi.org/10.15407/mag12.04.287
(Mi jmag654)
 

This article is cited in 4 scientific papers (total in 4 papers)

The Carathéodory inequality on the boundary for holomorphic functions in the unit disc

B. N. Örnek

Department of Computer Engineering, Amasya University, Merkez–Amasya 05100, Turkey
Full-text PDF (186 kB) Citations (4)
References:
Abstract: In this paper, a boundary version of the Carathéodory inequality is studied. For the function $f(z)$, defined in the unit disc with $f(0)=0$, $\Re f(z)\leq A$, we estimate a modulus of angular derivative at the boundary point $z_{0}$, $\Re f(z_{0})=A$, by taking into account the first two nonzero Maclaurin coefficients. The sharpness of these estimates is also proved.
Key words and phrases: Schwarz lemma at the boundary, Carathéodory inequality.
Received: 12.02.2013
Revised: 13.12.2015
Bibliographic databases:
Document Type: Article
MSC: 30C80
Language: English
Citation: B. N. Örnek, “The Carathéodory inequality on the boundary for holomorphic functions in the unit disc”, Zh. Mat. Fiz. Anal. Geom., 12:4 (2016), 287–301
Citation in format AMSBIB
\Bibitem{Orn16}
\by B.~N.~\"Ornek
\paper The Carath\'{e}odory inequality on the boundary for holomorphic functions in the unit disc
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2016
\vol 12
\issue 4
\pages 287--301
\mathnet{http://mi.mathnet.ru/jmag654}
\crossref{https://doi.org/10.15407/mag12.04.287}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3583325}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000392861500001}
Linking options:
  • https://www.mathnet.ru/eng/jmag654
  • https://www.mathnet.ru/eng/jmag/v12/i4/p287
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :60
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024