Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2016, Volume 12, Number 2, Pages 134–167
DOI: https://doi.org/10.15407/mag12.02.134
(Mi jmag649)
 

This article is cited in 9 scientific papers (total in 9 papers)

Spherical quadrilaterals with three non-integer angles

A. Eremenkoa, A. Gabrielova, V. Tarasovbc

a Department of Mathematics, Purdue University, West Lafayette, IN 47907-2067 USA
b St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of Sciences, 27 Fontanka, St. Petersburg, 191023, Russia
c Department of Mathematical Sciences, IUPUI, Indianapolis, IN 46202-3216 USA
Full-text PDF (392 kB) Citations (9)
References:
Abstract: A spherical quadrilateral is a bordered surface homeomorphic to a closed disk, with four distinguished boundary points called corners, equipped with a Riemannian metric of constant curvature $1$, except at the corners, and such that the boundary arcs between the corners are geodesic. We discuss the problem of classification of these quadrilaterals and perform the classification up to isometry in the case that one corner of a quadrilateral is integer (i.e., its angle is a multiple of $\pi$) while the angles at its other three corners are not multiples of $\pi$. The problem is equivalent to classification of Heun's equations with real parameters and unitary monodromy, with the trivial monodromy at one of its four singular point.
Key words and phrases: surfaces of positive curvature, conic singularities, Heun equation, Schwarz equation, accessory parameter, conformal mapping, circular polygon.
Funding agency Grant number
National Science Foundation DMS-1361836
DMS-116162
Supported by NSF grant DMS-1361836.
Supported by NSF grant DMS-1161629.
Received: 07.07.2015
Bibliographic databases:
Document Type: Article
MSC: 30C20,34M03
Language: English
Citation: A. Eremenko, A. Gabrielov, V. Tarasov, “Spherical quadrilaterals with three non-integer angles”, Zh. Mat. Fiz. Anal. Geom., 12:2 (2016), 134–167
Citation in format AMSBIB
\Bibitem{EreGabTar16}
\by A.~Eremenko, A.~Gabrielov, V.~Tarasov
\paper Spherical quadrilaterals with three non-integer angles
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2016
\vol 12
\issue 2
\pages 134--167
\mathnet{http://mi.mathnet.ru/jmag649}
\crossref{https://doi.org/10.15407/mag12.02.134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3498735}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000378645600003}
\elib{https://elibrary.ru/item.asp?id=25955929}
Linking options:
  • https://www.mathnet.ru/eng/jmag649
  • https://www.mathnet.ru/eng/jmag/v12/i2/p134
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024