Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2016, Volume 12, Number 1, Pages 78–93
DOI: https://doi.org/10.15407/mag12.01.078
(Mi jmag629)
 

Eigenvalue distribution of bipartite large weighted random graphs. Resolvent approach

V. Vengerovsky

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauki Ave., Kharkiv, 61103, Ukraine
References:
Abstract: We study an eigenvalue distribution of the adjacency matrix $A^{(N,p, \alpha)}$ of the weighted random bipartite graphs $\Gamma= \Gamma_{N,p,\alpha}$. We assume that the graphs have $N$ vertices, the ratio of parts is $\frac{\alpha}{1-\alpha}$, and the average number of edges attached to one vertex is $\alpha p$ for the first part and $(1-\alpha) p$ for the second part of vertices. To each edge of the graph $e_{ij}$, we assign the weight given by a random variable $a_{ij}$ with the finite second moment.
We consider the resolvents $G^{(N,p, \alpha)}(z)$ of $A^{(N,p, \alpha)}$ and study the functions
\begin{gather*}f_{1,N}(u,z)=\frac{1}{[\alpha N]}\sum_{k=1}^{[\alpha N]}e^{-ua_k^2G_{kk}^{(N,p,\alpha)}(z)} \end{gather*}
and
\begin{gather*}f_{2,N}(u,z)=\frac{1}{N-[\alpha N]}\sum_{k=[\alpha N]+1}^Ne^{-ua_k^2G_{kk}^{(N,p,\alpha)}(z)}\end{gather*}
in the limit $N\to \infty$. We derive a closed system of equations that uniquely determine the limiting functions $f_{1}(u,z)$ and $f_{2}(u,z)$. This system of equations allows us to prove the existence of the limiting measure $\sigma_{p, \alpha}$. The weak convergence in probability of the normalized eigenvalue counting measures is proved.
Key words and phrases: sparse random matrices, bipartite graphs, normalized eigenvalue counting measure.
Received: 26.01.2015
Revised: 16.06.2015
Bibliographic databases:
Document Type: Article
MSC: 15B52
Language: English
Citation: V. Vengerovsky, “Eigenvalue distribution of bipartite large weighted random graphs. Resolvent approach”, Zh. Mat. Fiz. Anal. Geom., 12:1 (2016), 78–93
Citation in format AMSBIB
\Bibitem{Ven16}
\by V.~Vengerovsky
\paper Eigenvalue distribution of bipartite large weighted random graphs. Resolvent approach
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2016
\vol 12
\issue 1
\pages 78--93
\mathnet{http://mi.mathnet.ru/jmag629}
\crossref{https://doi.org/10.15407/mag12.01.078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3477950}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368348000004}
Linking options:
  • https://www.mathnet.ru/eng/jmag629
  • https://www.mathnet.ru/eng/jmag/v12/i1/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :29
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024