Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2014, Volume 10, Number 3, Pages 267–299
DOI: https://doi.org/10.15407/mag10.03.267
(Mi jmag594)
 

This article is cited in 3 scientific papers (total in 3 papers)

Global Weak Solutions of the Navier–Stokes/Fokker–Planck/Poisson Linked Equations

O. Anoshchenkoa, S. Iegorovb, E. Khruslovc

a Department of Mechanics and Mathematics, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61077, Ukraine
b EPAM Systems, 63 Kolomens'ka Str., Kharkiv 61166, Ukraine
c B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv 61103, Ukraine
Full-text PDF (285 kB) Citations (3)
References:
Abstract: We consider the initial boundary value problem for the linked Navier–Stokes/Fokker–Planck/Poisson equations describing the flow of a viscous incompressible fluid with highly dispersed infusion of solid charged particles which are subjected to a random impact from thermal motion of the fluid molecules. We prove the existence of global weak solutions for the problem and study some properties of these solutions.
Key words and phrases: Navier–Stokes equation, Fokker–Planck equation, Poisson equation, global weak solution, modified Galerkin method, fixed point Schauder theorem, compactness of approximations.
Received: 25.03.2014
Bibliographic databases:
Document Type: Article
MSC: 35A01, 35Q30, 35Q84
Language: English
Citation: O. Anoshchenko, S. Iegorov, E. Khruslov, “Global Weak Solutions of the Navier–Stokes/Fokker–Planck/Poisson Linked Equations”, Zh. Mat. Fiz. Anal. Geom., 10:3 (2014), 267–299
Citation in format AMSBIB
\Bibitem{AnoIegKhr14}
\by O.~Anoshchenko, S.~Iegorov, E.~Khruslov
\paper Global Weak Solutions of the Navier--Stokes/Fokker--Planck/Poisson Linked Equations
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2014
\vol 10
\issue 3
\pages 267--299
\mathnet{http://mi.mathnet.ru/jmag594}
\crossref{https://doi.org/10.15407/mag10.03.267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3470288}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346135800001}
Linking options:
  • https://www.mathnet.ru/eng/jmag594
  • https://www.mathnet.ru/eng/jmag/v10/i3/p267
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:317
    Full-text PDF :92
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024