Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2014, Volume 10, Number 2, Pages 240–255
DOI: https://doi.org/10.15407/mag10.02.240
(Mi jmag591)
 

This article is cited in 3 scientific papers (total in 3 papers)

Eigenvalue Distribution of a Large Weighted Bipartite Random Graph

V. Vengerovsky

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv 61103, Ukraine
Full-text PDF (216 kB) Citations (3)
References:
Abstract: We study an eigenvalue distribution of the adjacency matrix $A^{(N,p, \alpha)}$ of the weighted random bipartite graph $\Gamma= \Gamma_{N,p}$. We assume that the graph has $N$ vertices, the ratio of parts is $\displaystyle\frac{\alpha}{1-\alpha}$, and the average number of the edges attached to one vertex is $\alpha p$ or $(1-\alpha) p$. To every edge of the graph $e_{ij}$, we assign the weight given by a random variable $a_{ij}$ with all moments finite.
We consider the moments of the normalized eigenvalue counting measure $\sigma_{N,p, \alpha}$ of $A^{(N,p, \alpha)}$. The weak convergence in probability of the normalized eigenvalue counting measures is proved.
Key words and phrases: random bipartite graph, eigenvalue distribution, counting measure.
Received: 20.12.2012
Revised: 28.01.2014
Bibliographic databases:
Document Type: Article
MSC: 15B52
Language: English
Citation: V. Vengerovsky, “Eigenvalue Distribution of a Large Weighted Bipartite Random Graph”, Zh. Mat. Fiz. Anal. Geom., 10:2 (2014), 240–255
Citation in format AMSBIB
\Bibitem{Ven14}
\by V.~Vengerovsky
\paper Eigenvalue Distribution of a Large Weighted Bipartite Random Graph
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2014
\vol 10
\issue 2
\pages 240--255
\mathnet{http://mi.mathnet.ru/jmag591}
\crossref{https://doi.org/10.15407/mag10.02.240}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236969}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334662300005}
Linking options:
  • https://www.mathnet.ru/eng/jmag591
  • https://www.mathnet.ru/eng/jmag/v10/i2/p240
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :43
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024