Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2014, Volume 10, Number 2, Pages 233–239
DOI: https://doi.org/10.15407/mag10.02.233
(Mi jmag590)
 

This article is cited in 1 scientific paper (total in 1 paper)

Automorphisms of Riemann–Cartan Manifolds with Semi-Symmetric Connection

V. I. Panzhensky

Penza State Pedagogical University, 37 Lermontov Str., Penza 440206, Russia
Full-text PDF (155 kB) Citations (1)
References:
Abstract: It is proved that the maximum dimension of the Lie group of automorphisms of a Riemann–Cartan manifold $(M,g,\tilde{\nabla})$ is $\frac{n(n-1)}{2}+1$, where $M$ is a smooth $n$-dimensional manifold, $g$ is a Riemannian or semi-Riemannian metric on $M$, $\tilde{\nabla }$ is a semi-symmetric connection.
Key words and phrases: Riemann–Cartan manifolds, automorphisms, semi-symmetric connection.
Received: 13.12.2012
Revised: 15.01.2014
Bibliographic databases:
Document Type: Article
MSC: 53B50
Language: English
Citation: V. I. Panzhensky, “Automorphisms of Riemann–Cartan Manifolds with Semi-Symmetric Connection”, Zh. Mat. Fiz. Anal. Geom., 10:2 (2014), 233–239
Citation in format AMSBIB
\Bibitem{Pan14}
\by V.~I.~Panzhensky
\paper Automorphisms of Riemann--Cartan Manifolds with Semi-Symmetric Connection
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2014
\vol 10
\issue 2
\pages 233--239
\mathnet{http://mi.mathnet.ru/jmag590}
\crossref{https://doi.org/10.15407/mag10.02.233}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236968}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334662300004}
Linking options:
  • https://www.mathnet.ru/eng/jmag590
  • https://www.mathnet.ru/eng/jmag/v10/i2/p233
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :84
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024