Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2013, Volume 9, Number 2, Pages 239–265 (Mi jmag559)  

Spectrum of Two-Magnon non-Heisenberg Ferromagnetic Model of Arbitrary Spin with Impurity

S. M. Tashpulatov

Institute of Nuclear Physics, Academy of Sciences of Uzbekistan
References:
Abstract: We consider a two-magnon system in the isotropic non-Heisenberg ferromagnetic model of an arbitrary spin $s$ on a $\nu$-dimensional lattice $Z^{\nu}$. We establish that the essential spectrum of the system consists of the union of at most four intervals. We obtain lower and upper estimates for the number of three-particle bound states, i.e., for the number of points of discrete spectrum of the system.
Key words and phrases: non-Heisenberg ferromagnet, essential spectrum, discrete spectrum, three-particle discrete Schrödinger operator, compact operator, finite-dimensional operator, lattice, spin.
Received: 12.05.2011
Revised: 06.06.2012
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. M. Tashpulatov, “Spectrum of Two-Magnon non-Heisenberg Ferromagnetic Model of Arbitrary Spin with Impurity”, Zh. Mat. Fiz. Anal. Geom., 9:2 (2013), 239–265
Citation in format AMSBIB
\Bibitem{Tas13}
\by S.~M.~Tashpulatov
\paper Spectrum of Two-Magnon non-Heisenberg Ferromagnetic Model of Arbitrary Spin with Impurity
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2013
\vol 9
\issue 2
\pages 239--265
\mathnet{http://mi.mathnet.ru/jmag559}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113463}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000318145500007}
Linking options:
  • https://www.mathnet.ru/eng/jmag559
  • https://www.mathnet.ru/eng/jmag/v9/i2/p239
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025