|
Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2013, Volume 9, Number 1, Pages 51–58
(Mi jmag548)
|
|
|
|
A Note on Operator Equations Describing the Integral
H. Königa, V. Milmanb a Mathematisches Seminar Universität Kiel,
24098 Kiel, Germany
b School of Mathematical Sciences Tel Aviv University,
Ramat Aviv, Tel Aviv 69978, Israel
Abstract:
We study operator equations generalizing the chain rule and the
substitution rule for the integral and the derivative of the type
\begin{equation}
f\circ g + c = I\ (Tf\circ g\cdot Tg), \quad f,g\in C^1(\mathbb{R}),\tag{1}
\end{equation}
where $T\!: C^1(\mathbb{R})\to C(\mathbb{R})$ and where $I$ is defined on $C(\mathbb{R})$. We
consider suitable conditions on $I$ and $T$ such that (1) is
well-defined and, after reformulating (1) as
\begin{equation}
V(f\circ g)=Tf\circ g\cdot Tg, \quad f,g\in C^1(\mathbb{R})\tag{2}
\end{equation}
with $V\!: C^1(\mathbb{R})\to C(\mathbb{R})$, give the general form of $T$, $V$ and $I$.
Simple initial conditions then guarantee that the derivative and the
integral are the only solutions for $T$ and $I$. We also consider an
analogue of the Leibniz rule and study surjectivity properties
there.
Key words and phrases:
operator equation, chain rule, Leibniz rule, integral.
Received: 23.07.2012
Citation:
H. König, V. Milman, “A Note on Operator Equations Describing the Integral”, Zh. Mat. Fiz. Anal. Geom., 9:1 (2013), 51–58
Linking options:
https://www.mathnet.ru/eng/jmag548 https://www.mathnet.ru/eng/jmag/v9/i1/p51
|
Statistics & downloads: |
Abstract page: | 200 | Full-text PDF : | 60 | References: | 53 |
|