Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2013, Volume 9, Number 1, Pages 51–58 (Mi jmag548)  

A Note on Operator Equations Describing the Integral

H. Königa, V. Milmanb

a Mathematisches Seminar Universität Kiel, 24098 Kiel, Germany
b School of Mathematical Sciences Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
References:
Abstract: We study operator equations generalizing the chain rule and the substitution rule for the integral and the derivative of the type
\begin{equation} f\circ g + c = I\ (Tf\circ g\cdot Tg), \quad f,g\in C^1(\mathbb{R}),\tag{1} \end{equation}
where $T\!: C^1(\mathbb{R})\to C(\mathbb{R})$ and where $I$ is defined on $C(\mathbb{R})$. We consider suitable conditions on $I$ and $T$ such that (1) is well-defined and, after reformulating (1) as
\begin{equation} V(f\circ g)=Tf\circ g\cdot Tg, \quad f,g\in C^1(\mathbb{R})\tag{2} \end{equation}
with $V\!: C^1(\mathbb{R})\to C(\mathbb{R})$, give the general form of $T$, $V$ and $I$. Simple initial conditions then guarantee that the derivative and the integral are the only solutions for $T$ and $I$. We also consider an analogue of the Leibniz rule and study surjectivity properties there.
Key words and phrases: operator equation, chain rule, Leibniz rule, integral.
Received: 23.07.2012
Bibliographic databases:
Document Type: Article
MSC: Primary 39B52; Secondary 25A42, 34K30
Language: English
Citation: H. König, V. Milman, “A Note on Operator Equations Describing the Integral”, Zh. Mat. Fiz. Anal. Geom., 9:1 (2013), 51–58
Citation in format AMSBIB
\Bibitem{KonMil13}
\by H.~K\"onig, V.~Milman
\paper A Note on Operator Equations Describing the Integral
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2013
\vol 9
\issue 1
\pages 51--58
\mathnet{http://mi.mathnet.ru/jmag548}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3088155}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314340900004}
Linking options:
  • https://www.mathnet.ru/eng/jmag548
  • https://www.mathnet.ru/eng/jmag/v9/i1/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :60
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024