Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2012, Volume 8, Number 3, Pages 248–259 (Mi jmag537)  

On the universal models of commutative systems of linear operators

R. Hatamleha, V. A. Zolotarevbc

a Department of Mathematics, Jadara University, Irbid-Jordan
b Mathematics Division, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkiv 61103, Ukraine
c V. N. Karazin Kharkiv National University, Faculty of Mathematics and Mechanics, 4 Svobody Sq., Kharkiv 61077, Ukraine
References:
Abstract: The universal models are constructed for a system of linear bounded non-selfadjoint operators $\{A_1,A_2\}$ acting in a Hilbert space $H$ such that 1) $[A_1,A_2]=0$, $[A_1^*,A_2]=0$; 2) $\displaystyle{\frac{A_k-A_k^*}i\geq0}$ ($k=1, 2$); 3) the function $A(\lambda)=A_1(\lambda_1)A_2(\lambda_2)$ ($A_k(\lambda_k)=A_k(I-\lambda_kA_k)^{-1}$, $k=1, 2$) is an entire function of the exponential type. It is proved that this class of linear operator systems is realized by the restriction on invariant subspaces of systems of operator of integration by independent variables in $L^2(\Omega)\otimes l^2$ where $\Omega$ is a rectangle in $\mathbb{R}^2$.
Key words and phrases: non-selfadjoint operators, universal models.
Received: 07.10.2011
Bibliographic databases:
Document Type: Article
MSC: 47A45
Language: Russian
Citation: R. Hatamleh, V. A. Zolotarev, “On the universal models of commutative systems of linear operators”, Zh. Mat. Fiz. Anal. Geom., 8:3 (2012), 248–259
Citation in format AMSBIB
\Bibitem{HatZol12}
\by R.~Hatamleh, V.~A.~Zolotarev
\paper On the universal models of commutative systems of linear operators
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2012
\vol 8
\issue 3
\pages 248--259
\mathnet{http://mi.mathnet.ru/jmag537}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3053205}
Linking options:
  • https://www.mathnet.ru/eng/jmag537
  • https://www.mathnet.ru/eng/jmag/v8/i3/p248
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :78
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024