Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2012, Volume 8, Number 2, Pages 190–206 (Mi jmag534)  

This article is cited in 2 scientific papers (total in 2 papers)

A symmetric model of viscous relaxing fluid. An evolution problem

D. Zakora

Taurida National V. I. Vernadsky University 4 Vernadsky Ave., Simferopol 95007, Crimea, Ukraine
Full-text PDF (314 kB) Citations (2)
References:
Abstract: An evolution problem on small motions of the viscous rotating relaxing fluid in a bounded domain is studied. The problem is reduced to the Cauchy problem for the first-order integro-differential equation in a Hilbert space. Using this equation, we prove a strong unique solvability theorem for the corresponding initial-boundary value problem.
Key words and phrases: viscous fluid, compressible fluid, existence, uniqueness, integro-differential equation.
Received: 12.04.2011
Bibliographic databases:
Document Type: Article
MSC: 45K05, 58C40, 76R99
Language: English
Citation: D. Zakora, “A symmetric model of viscous relaxing fluid. An evolution problem”, Zh. Mat. Fiz. Anal. Geom., 8:2 (2012), 190–206
Citation in format AMSBIB
\Bibitem{Zak12}
\by D.~Zakora
\paper A symmetric model of viscous relaxing fluid. An evolution problem
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2012
\vol 8
\issue 2
\pages 190--206
\mathnet{http://mi.mathnet.ru/jmag534}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2985610}
\zmath{https://zbmath.org/?q=an:06082853}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304030100006}
Linking options:
  • https://www.mathnet.ru/eng/jmag534
  • https://www.mathnet.ru/eng/jmag/v8/i2/p190
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :65
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024