|
Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2012, Volume 8, Number 2, Pages 144–157
(Mi jmag531)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Andreev–Korkin identity, Saigo fractional integration operator and $\mathrm{Lip}_L(\alpha)$ functions
D. Jankova, T. K. Pogányb a Department of Mathematics, University of Osijek
Trg Lj. Gaja 6, 31000 Osijek, Croatia
b Faculty od Maritime Studies, University of Rijeka
Studentska 2, 51000 Rijeka, Croatia
Abstract:
The Andreev–Korkin identity for the Chebyshev functional is treated by Hölder inequality, when the functional consists of $\mathrm{Lip}_L(\alpha)$ functions. The derived upper bound is applied to the so-called Chebyshev–Saigo functional, built by Saigo fractional integral operator – recently introduced by Saxena et al. (R. K. Saxena, J. Ram, J. Daiya, and T. K. Pogány. – Integral Transforms Spec. Funct. 22 (2011), 671–680).
Key words and phrases:
Chebyshev functional, Andreev–Korkin identity, Chebyshev–Saigo functional, Saigo hypergeometric fractional integration operator, Lipschitz function clas.
Received: 26.10.2010 Revised: 25.05.2011
Citation:
D. Jankov, T. K. Pogány, “Andreev–Korkin identity, Saigo fractional integration operator and $\mathrm{Lip}_L(\alpha)$ functions”, Zh. Mat. Fiz. Anal. Geom., 8:2 (2012), 144–157
Linking options:
https://www.mathnet.ru/eng/jmag531 https://www.mathnet.ru/eng/jmag/v8/i2/p144
|
Statistics & downloads: |
Abstract page: | 177 | Full-text PDF : | 99 | References: | 33 |
|