|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1996, Volume 3, Number 1/2, Pages 164–168
(Mi jmag491)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
A note on the Hall–Mergelyan theme
M. L. Sodin B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47, Lenin Ave., 310164, Kharkov, Ukraine
Abstract:
Let $\mu$ be a measure supported by the points $e^k$, $k=1,2,\dots,$ with the weights $\mu_k=e^{sk^2/2}$ where $s>1$ is a parameter. Then the polynomials are dense in the space$\mathcal L^p(\mu)$ for $p<s$ and are not dense in the space $\mathcal L^p(\mu)$ for $p<s$. This answers the question posed by Christian Berg and Jens Peter Reus Christensen.
Received: 06.03.1995
Citation:
M. L. Sodin, “A note on the Hall–Mergelyan theme”, Mat. Fiz. Anal. Geom., 3:1/2 (1996), 164–168
Linking options:
https://www.mathnet.ru/eng/jmag491 https://www.mathnet.ru/eng/jmag/v3/i1/p164
|
Statistics & downloads: |
Abstract page: | 192 | Full-text PDF : | 68 |
|