|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1996, Volume 3, Number 1/2, Pages 146–163
(Mi jmag490)
|
|
|
|
On asymptotics of entire functions of finite logarithmic order
M. M. Sheremeta, R. I. Tarasyuk, N. V. Zabolotskii Lvov University, 1 Universitetska St., 290602, Lvov, Ukraine
Abstract:
The asymptotic behaviour of an entire function is studied whose zero counting function $n(t)$ satisfies the condition $n(t)=\Delta\ln^pt+\Delta_1\ln^qt+o(\ln^qt)$, $t\to+\infty$, where $0<q<p<\infty$, $0<\Delta<\infty$, $-\infty<\Delta_1<\infty$.
Received: 21.02.1994
Citation:
M. M. Sheremeta, R. I. Tarasyuk, N. V. Zabolotskii, “On asymptotics of entire functions of finite logarithmic order”, Mat. Fiz. Anal. Geom., 3:1/2 (1996), 146–163
Linking options:
https://www.mathnet.ru/eng/jmag490 https://www.mathnet.ru/eng/jmag/v3/i1/p146
|
|