Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1996, Volume 3, Number 1/2, Pages 125–130 (Mi jmag487)  

Closed convex surfaces in $E^3$ with given functions of curvatures

A. I. Medianik

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov
Abstract: It is proved that there are a regular closed convex surface $S$ and a constant vector $c$ for which the equality
$$K^{-1}+H^{-\alpha}+c\mathbf n=\varphi(\mathbf n)$$
is realized at a point with external normal $\mathbf n$. Here $K$ and $H$ are the Gauss and mean curvatures of $S$ at the point with normal $\mathbf n$, $\varphi(\mathbf n)$ is a given regular function on sphere, which satisfies the closeness condition and the inequality
$$\operatorname{inf}\varphi>\frac9{32}\biggl[1+\sqrt{1+\frac{64}9(\operatorname{sup}\varphi)^{2-\alpha}}\biggr](\operatorname{sup}\varphi)^{\alpha-1},$$
$\alpha\in(0,1]$. The solution $(S,c)$ is unique with a translation.
Received: 09.06.1994
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. I. Medianik, “Closed convex surfaces in $E^3$ with given functions of curvatures”, Mat. Fiz. Anal. Geom., 3:1/2 (1996), 125–130
Citation in format AMSBIB
\Bibitem{Med96}
\by A.~I.~Medianik
\paper Closed convex surfaces in $E^3$ with given functions of curvatures
\jour Mat. Fiz. Anal. Geom.
\yr 1996
\vol 3
\issue 1/2
\pages 125--130
\mathnet{http://mi.mathnet.ru/jmag487}
\zmath{https://zbmath.org/?q=an:0869.53001}
Linking options:
  • https://www.mathnet.ru/eng/jmag487
  • https://www.mathnet.ru/eng/jmag/v3/i1/p125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024