Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1996, Volume 3, Number 1/2, Pages 102–117 (Mi jmag485)  

On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$

V. N. Kokarev

Samara State University
Abstract: Let designation $\operatorname{spur}_m(z_{ij})=1$ stand for the sum of all principal $m$-order minors of matrix $(z_{ij})$, consisting of second derivatives of the function $z(x^1,\dots,x^n)$. Any complete convex class $C^{2\alpha}$ solution of the equation $\operatorname{spur}_m(z_{ij})=1$, ($2\le m<n$), will be a quadratic polynomial if the matrix $(z_{ij})$ eigenvalues are sufficiently close to each other.
Received: 25.01.1995
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. N. Kokarev, “On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$”, Mat. Fiz. Anal. Geom., 3:1/2 (1996), 102–117
Citation in format AMSBIB
\Bibitem{Kok96}
\by V.~N.~Kokarev
\paper On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$
\jour Mat. Fiz. Anal. Geom.
\yr 1996
\vol 3
\issue 1/2
\pages 102--117
\mathnet{http://mi.mathnet.ru/jmag485}
\zmath{https://zbmath.org/?q=an:0866.35027}
Linking options:
  • https://www.mathnet.ru/eng/jmag485
  • https://www.mathnet.ru/eng/jmag/v3/i1/p102
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024