|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1996, Volume 3, Number 1/2, Pages 102–117
(Mi jmag485)
|
|
|
|
On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$
V. N. Kokarev Samara State University
Abstract:
Let designation $\operatorname{spur}_m(z_{ij})=1$ stand for the sum of all principal $m$-order minors of matrix $(z_{ij})$, consisting of second derivatives of the function $z(x^1,\dots,x^n)$. Any complete convex class $C^{2\alpha}$ solution of the equation $\operatorname{spur}_m(z_{ij})=1$, ($2\le m<n$), will be a quadratic polynomial if the matrix $(z_{ij})$ eigenvalues are sufficiently close to each other.
Received: 25.01.1995
Citation:
V. N. Kokarev, “On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$”, Mat. Fiz. Anal. Geom., 3:1/2 (1996), 102–117
Linking options:
https://www.mathnet.ru/eng/jmag485 https://www.mathnet.ru/eng/jmag/v3/i1/p102
|
|