Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1996, Volume 3, Number 1/2, Pages 70–79 (Mi jmag483)  

A theorem on stability of the argument of characteristic function

A. I. Il'inskii

Kharkov State University, 4, Svobody Sq., 310077, Kharkov, Ukraine
Abstract: Let $f(x)$ be the characteristic function of a probability distribution on the line. If $1-|f(t)|\le\varepsilon$ for $|t|\le a$ and, moreover, $\varepsilon\le C_1$, then
$$ \min_{\beta\in R} \max_{|t|\leq a}|\arg f(t)-\beta t|\leq C_2\varepsilon^{3/4}, $$
where $C_1$, $C_2$ are suitable absolute constants.
Received: 08.12.1994
Document Type: Article
Language: English
Citation: A. I. Il'inskii, “A theorem on stability of the argument of characteristic function”, Mat. Fiz. Anal. Geom., 3:1/2 (1996), 70–79
Citation in format AMSBIB
\Bibitem{Ili96}
\by A.~I.~Il'inskii
\paper A theorem on stability of the argument of characteristic function
\jour Mat. Fiz. Anal. Geom.
\yr 1996
\vol 3
\issue 1/2
\pages 70--79
\mathnet{http://mi.mathnet.ru/jmag483}
Linking options:
  • https://www.mathnet.ru/eng/jmag483
  • https://www.mathnet.ru/eng/jmag/v3/i1/p70
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024