|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1996, Volume 3, Number 1/2, Pages 70–79
(Mi jmag483)
|
|
|
|
A theorem on stability of the argument of characteristic function
A. I. Il'inskii Kharkov State University, 4, Svobody Sq., 310077, Kharkov, Ukraine
Abstract:
Let $f(x)$ be the characteristic function of a probability distribution on the line. If $1-|f(t)|\le\varepsilon$ for $|t|\le a$ and, moreover, $\varepsilon\le C_1$, then $$ \min_{\beta\in R} \max_{|t|\leq a}|\arg f(t)-\beta t|\leq C_2\varepsilon^{3/4}, $$ where $C_1$, $C_2$ are suitable absolute constants.
Received: 08.12.1994
Citation:
A. I. Il'inskii, “A theorem on stability of the argument of characteristic function”, Mat. Fiz. Anal. Geom., 3:1/2 (1996), 70–79
Linking options:
https://www.mathnet.ru/eng/jmag483 https://www.mathnet.ru/eng/jmag/v3/i1/p70
|
|