|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1997, Volume 4, Number 3, Pages 339–347
(Mi jmag465)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
A representation of isometries on function spaces
Mikhail G. Zaidenberg Université de Grenoble I, Institut Fourier, Laboratoire de Mathématiques, associé au CNRS (URA 188), B.P. 74, 38402 ST MARTIN D'HÈRES Cedex, France
Abstract:
The main result states that every surjective isometry between two ideal Banach lattices of mesurable functions which satisfy certain conditions, can be represented as composition of an operator of mesurable change of variable and an operator of multiplication by a mesurable function.
Received: 18.12.1996
Citation:
Mikhail G. Zaidenberg, “A representation of isometries on function spaces”, Mat. Fiz. Anal. Geom., 4:3 (1997), 339–347
Linking options:
https://www.mathnet.ru/eng/jmag465 https://www.mathnet.ru/eng/jmag/v4/i3/p339
|
Statistics & downloads: |
Abstract page: | 119 | Full-text PDF : | 45 |
|