|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1997, Volume 4, Number 3, Pages 334–338
(Mi jmag464)
|
|
|
|
Stability of isodiametric problem solution in the Minkowski geometry
V. I. Diskant Cherkasy State Technological University
Abstract:
The theorem is proved: if $(D_B(X)/2)^n-V_B(X)/V_B(B_1)\le\varepsilon$, $0\le\varepsilon$, $V_B(X)=V_B(B_1)$, then $\delta_B(X,B_1)\le2\varepsilon^{1/n}$, where $X$ – convex body in $n$-dimensional space of Minkowski $\tilde M^n$, $B$ – normed body $\tilde M^n$, $B_1=B\cap(-B)$, $V_B(X)$ – diameter $X$, $V_B(X)$ – volume $X$, $\delta_B(X,B_1)$ – deflection of bodies $X$ and $B_1$ in $\tilde M^n$.
Received: 23.02.1994
Citation:
V. I. Diskant, “Stability of isodiametric problem solution in the Minkowski geometry”, Mat. Fiz. Anal. Geom., 4:3 (1997), 334–338
Linking options:
https://www.mathnet.ru/eng/jmag464 https://www.mathnet.ru/eng/jmag/v4/i3/p334
|
|