Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1997, Volume 4, Number 3, Pages 334–338 (Mi jmag464)  

Stability of isodiametric problem solution in the Minkowski geometry

V. I. Diskant

Cherkasy State Technological University
Abstract: The theorem is proved: if $(D_B(X)/2)^n-V_B(X)/V_B(B_1)\le\varepsilon$, $0\le\varepsilon$, $V_B(X)=V_B(B_1)$, then $\delta_B(X,B_1)\le2\varepsilon^{1/n}$, where $X$ – convex body in $n$-dimensional space of Minkowski $\tilde M^n$, $B$ – normed body $\tilde M^n$, $B_1=B\cap(-B)$, $V_B(X)$ – diameter $X$, $V_B(X)$ – volume $X$, $\delta_B(X,B_1)$ – deflection of bodies $X$ and $B_1$ in $\tilde M^n$.
Received: 23.02.1994
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Diskant, “Stability of isodiametric problem solution in the Minkowski geometry”, Mat. Fiz. Anal. Geom., 4:3 (1997), 334–338
Citation in format AMSBIB
\Bibitem{Dis97}
\by V.~I.~Diskant
\paper Stability of isodiametric problem solution in the Minkowski geometry
\jour Mat. Fiz. Anal. Geom.
\yr 1997
\vol 4
\issue 3
\pages 334--338
\mathnet{http://mi.mathnet.ru/jmag464}
\zmath{https://zbmath.org/?q=an:0896.52018}
Linking options:
  • https://www.mathnet.ru/eng/jmag464
  • https://www.mathnet.ru/eng/jmag/v4/i3/p334
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024