|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1997, Volume 4, Number 3, Pages 286–308
(Mi jmag462)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Integral representations of functions in the quantum disk. I
L. L. Vaksmana, D. L. Shklyarovb a B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov
b Kharkiv State University
Abstract:
A $q$-analogue of the unit disk - the simplest homogeneous space of the quantum group $SU(1,1)$ is considered, $q$-analogues of the Cauchy–Green formula, the integral representation of eigen functions of the Laplace–Beltrami operator, the Green function for the Poisson equation and the formula of the Fourier transformation are given.
Received: 04.01.1996
Citation:
L. L. Vaksman, D. L. Shklyarov, “Integral representations of functions in the quantum disk. I”, Mat. Fiz. Anal. Geom., 4:3 (1997), 286–308
Linking options:
https://www.mathnet.ru/eng/jmag462 https://www.mathnet.ru/eng/jmag/v4/i3/p286
|
Statistics & downloads: |
Abstract page: | 114 | Full-text PDF : | 55 |
|