|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1997, Volume 4, Number 1/2, Pages 212–247
(Mi jmag456)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
On isometric reflections in Banach spaces
A. Skorik, M. G. Zaidenberg Institut Fourier de Mathématiques,
Université Grenoble I, BP 74, 38402 Saint Martin
d'Hères-cédex, France
Abstract:
We obtain the following characterization of Hilbert spaces. Let $E$ be a Banach space the unit sphere $S$ of which has a hyperplane of symmetry. Then $E$ is a Hilbert space iff any of the following two conditions is fulfilled: a) the isometry group $\operatorname{Iso}E$ of $E$ has a dense orbit in $S'$ ; b) the identity component $G_0$ of the group $\operatorname{Iso}E$ endowed with the strong operator topology acts topologically irreducible on $E$. Some related results on infinite dimensional Coxeter groups generated by isometric reflections are given which allow us to analyse the structure of isometry groups containing sufficiently many reflections.
Received: 25.12.1995
Citation:
A. Skorik, M. G. Zaidenberg, “On isometric reflections in Banach spaces”, Mat. Fiz. Anal. Geom., 4:1/2 (1997), 212–247
Linking options:
https://www.mathnet.ru/eng/jmag456 https://www.mathnet.ru/eng/jmag/v4/i1/p212
|
Statistics & downloads: |
Abstract page: | 138 | Full-text PDF : | 64 |
|