Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1998, Volume 5, Number 3/4, Pages 166–181 (Mi jmag435)  

This article is cited in 6 scientific papers (total in 6 papers)

A characterization of some even vector-valued Sturm–Liouville problems

Max Jodeit, Jr., B. M. Levitan

School of Mathematics, University of Minnesota
Full-text PDF (264 kB) Citations (6)
Abstract: We call “even” a Sturm–Liouville problem
\begin{gather} -y''+Q(x)y=\lambda y, \quad 0\leq x\leq\pi, \tag{1} \\ y'(0)-hy(0)=0, \tag{2} \\ y'(\pi)+Hy(\pi)=0, \tag{3} \end{gather}
in which $H=h$ and $Q(\pi-x)\equiv Q(x)$ on $[0,\pi]$. In this paper we study the vector-valued case, where the potential $Q(x)$ is a real symmetric $d\times d$ matrix for each $x$ in $[0,\pi],$ and the entries of $Q$ and their first derivatives (in the distribution sense) are all in $L^2[0,\pi]$. We assume that $h$ and $H$ are real symmetric $d\times d$ matrices.
We prove that a vector-valued Sturm–Liouville problem (1)–(3) is even if and only if, for each eigenvalue $\lambda$, whose multiplicity is $r=r_{\lambda}$ (where $1\le r\le d$, and where $\varphi_1(x,\lambda),\dots,\varphi_r(x,\lambda)$ denote orthonormal eigenfunctions belonging to $\lambda$), there exists an $r\times r$ matrix $A=(a_{ij})$ (which may depend on $\lambda$ and on the choice of basis $\{\varphi_i(x,\lambda)\}_{i=1}^r$, but does not depend on $x$) such that
(1) A is orthogonal and symmetric, and
(2) for $1\le i\le r$, $\varphi_i(\pi,\lambda)=\sum_{j=1}^ra_{ij}\varphi_j(0,\lambda)$.
\noindent To some extent our theorem can be considered a generalization of N. Levinson's results in [2].
Received: 10.02.1997
Bibliographic databases:
Document Type: Article
Language: English
Citation: Max Jodeit, Jr., B. M. Levitan, “A characterization of some even vector-valued Sturm–Liouville problems”, Mat. Fiz. Anal. Geom., 5:3/4 (1998), 166–181
Citation in format AMSBIB
\Bibitem{JodLev98}
\by Max Jodeit, Jr., B.~M.~Levitan
\paper A characterization of some even vector-valued Sturm--Liouville problems
\jour Mat. Fiz. Anal. Geom.
\yr 1998
\vol 5
\issue 3/4
\pages 166--181
\mathnet{http://mi.mathnet.ru/jmag435}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1668985}
\zmath{https://zbmath.org/?q=an:0955.34015}
Linking options:
  • https://www.mathnet.ru/eng/jmag435
  • https://www.mathnet.ru/eng/jmag/v5/i3/p166
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :119
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024