Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1998, Volume 5, Number 1/2, Pages 125–133 (Mi jmag432)  

On the Grassmanian image of submanifolds $F^n\subset E^{n+m}$ in which codimension does not exceed the dimension

V. M. Savel'ev

Slavyansk State Pedagogical Institute
Abstract: A. A. Borisenko's hypothesis is studied: every tangent space of the Grassman image of a regular submanifold $F^n\subset E^{n+m}$ contains a two-dimensional plane $\pi$ such that the sectional curvature of the Grassman manifold $G_{n,n+m}$ in $\pi$ is less or equal to $1$.
Received: 10.02.1997
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. M. Savel'ev, “On the Grassmanian image of submanifolds $F^n\subset E^{n+m}$ in which codimension does not exceed the dimension”, Mat. Fiz. Anal. Geom., 5:1/2 (1998), 125–133
Citation in format AMSBIB
\Bibitem{Sav98}
\by V.~M.~Savel'ev
\paper On the Grassmanian image of submanifolds $F^n\subset E^{n+m}$ in which codimension does not exceed the dimension
\jour Mat. Fiz. Anal. Geom.
\yr 1998
\vol 5
\issue 1/2
\pages 125--133
\mathnet{http://mi.mathnet.ru/jmag432}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1631842}
\zmath{https://zbmath.org/?q=an:0953.53006}
Linking options:
  • https://www.mathnet.ru/eng/jmag432
  • https://www.mathnet.ru/eng/jmag/v5/i1/p125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024