Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1999, Volume 6, Number 3/4, Pages 245–252 (Mi jmag413)  

This article is cited in 1 scientific paper (total in 1 paper)

Stability of Minkowski and Brunn's equations solutions

V. I. Diskant

Cherkasy Institute of Industrial Engineering
Full-text PDF (211 kB) Citations (1)
Abstract: The following theorem of stability of Minkowski and Brunn's equations solutions are proved.
Theorem 1. If
$$ V_1^n(A, X)-V(X)V^{n-1}(A)<\varepsilon,\ \ 0\leq\varepsilon<\varepsilon_0,\ \ V(X)=V(sA),\ \ s>0, $$
then $\delta(sA, X)<C\varepsilon^{1/n}$.
Theorem 2. If
$$ V^{1/n}(H_{\frac{1}{2}})-\frac{1}{2}V^{1/n}(A)-\frac{1}{2}V^{1/n}(X)<\varepsilon,\ \ 0\leq\varepsilon<\varepsilon_0,\ \ V(X)=V(sA),\ \ s>0, $$
then $\delta(sA, X)<C\varepsilon^{1/n}$.
In these theorems $A$ and $X$ — convex bodies in $R^n$, $V(A)$ — volume $A$, $V_1(A, X)$ — the first mixed volume $A$ and $X$, $H_{\frac{1}{2}}=\frac{1}{2}A+\frac{1}{2}X$, $\delta(sA, X)$ — deflection of $sA$ and $X$ bodies, $C$ and $\varepsilon_0$ are determined by task $s$, $n$, $r_A$ and $R_A$ ($r_A$ — radius of ball entered in $A$, $R_A$ — described about $A$).
Received: 07.04.1997
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Diskant, “Stability of Minkowski and Brunn's equations solutions”, Mat. Fiz. Anal. Geom., 6:3/4 (1999), 245–252
Citation in format AMSBIB
\Bibitem{Dis99}
\by V.~I.~Diskant
\paper Stability of Minkowski and Brunn's equations solutions
\jour Mat. Fiz. Anal. Geom.
\yr 1999
\vol 6
\issue 3/4
\pages 245--252
\mathnet{http://mi.mathnet.ru/jmag413}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1737212}
\zmath{https://zbmath.org/?q=an:0956.52005}
Linking options:
  • https://www.mathnet.ru/eng/jmag413
  • https://www.mathnet.ru/eng/jmag/v6/i3/p245
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024