|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1999, Volume 6, Number 3/4, Pages 245–252
(Mi jmag413)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Stability of Minkowski and Brunn's equations solutions
V. I. Diskant Cherkasy Institute of Industrial Engineering
Abstract:
The following theorem of stability of Minkowski and Brunn's equations solutions are proved.
Theorem 1. If
$$
V_1^n(A, X)-V(X)V^{n-1}(A)<\varepsilon,\ \ 0\leq\varepsilon<\varepsilon_0,\ \ V(X)=V(sA),\ \ s>0,
$$
then $\delta(sA, X)<C\varepsilon^{1/n}$.
Theorem 2. If
$$
V^{1/n}(H_{\frac{1}{2}})-\frac{1}{2}V^{1/n}(A)-\frac{1}{2}V^{1/n}(X)<\varepsilon,\ \
0\leq\varepsilon<\varepsilon_0,\ \ V(X)=V(sA),\ \ s>0,
$$
then $\delta(sA, X)<C\varepsilon^{1/n}$.
In these theorems $A$ and $X$ — convex bodies in $R^n$, $V(A)$ — volume $A$, $V_1(A, X)$ — the first mixed volume $A$ and $X$, $H_{\frac{1}{2}}=\frac{1}{2}A+\frac{1}{2}X$, $\delta(sA, X)$ — deflection of $sA$ and $X$ bodies, $C$ and $\varepsilon_0$ are determined by task $s$, $n$, $r_A$ and $R_A$ ($r_A$ — radius of ball entered in $A$, $R_A$ — described about $A$).
Received: 07.04.1997
Citation:
V. I. Diskant, “Stability of Minkowski and Brunn's equations solutions”, Mat. Fiz. Anal. Geom., 6:3/4 (1999), 245–252
Linking options:
https://www.mathnet.ru/eng/jmag413 https://www.mathnet.ru/eng/jmag/v6/i3/p245
|
Statistics & downloads: |
Abstract page: | 147 | Full-text PDF : | 55 |
|