Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2001, Volume 8, Number 3, Pages 308–317 (Mi jmag348)  

A question by Alexei Aleksandrov and logarithmic determinants

Mikhail Sodin

School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, 69978, Israel
Abstract: We construct an analytic function $f$ of Smirnov's class in the unit disk such that $\mathrm{Re}\,f$ vanishes almost everywhere on the unit circle and
$$ \liminf_{t\to\infty} t\operatorname{meas}\{\zeta:\,|\zeta|=1,\ |f(\zeta)|\ge t\}=0. $$
This answers negatively to the question posed by A. Aleksandrov. We also find new sufficient conditions for representations of functions of Smirnov's class by the Schwarz and Cauchy integrals. These conditions extend previous results by Aleksandrov.
Received: 05.06.2001
Bibliographic databases:
Document Type: Article
MSC: 30D50
Language: English
Citation: Mikhail Sodin, “A question by Alexei Aleksandrov and logarithmic determinants”, Mat. Fiz. Anal. Geom., 8:3 (2001), 308–317
Citation in format AMSBIB
\Bibitem{Sod01}
\by Mikhail Sodin
\paper A question by Alexei Aleksandrov and logarithmic determinants
\jour Mat. Fiz. Anal. Geom.
\yr 2001
\vol 8
\issue 3
\pages 308--317
\mathnet{http://mi.mathnet.ru/jmag348}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1868661}
\zmath{https://zbmath.org/?q=an:1013.30019}
Linking options:
  • https://www.mathnet.ru/eng/jmag348
  • https://www.mathnet.ru/eng/jmag/v8/i3/p308
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024