Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2001, Volume 8, Number 2, Pages 175–188 (Mi jmag338)  

On possible deterioration of smoothness under the operation of convolution

A. I. Il'inskii

V. N. Karazin Kharkiv National University, Faculty of Mathematics and Mechanics
Abstract: Let $\mu$ be a completely finite Borel non-negative measure on the real line $\mathbf R$. We give condition on measure $\mu$ which is necessary and sufficient for the existence of a non-negative, integrable on the real line, and entire function $p$ such that
\begin{equation} \operatorname{ess\,sup}\{(p\ast\mu)(x):x\in I\}=\infty \text{ для любого интервала } I\subset\mathbf R. \tag{1} \end{equation}
We give also conditions on measure $\mu$ which are sufficient for the existence of an entire function $p$ with prescribed growth in complex plane (for example, of finite order $\varrho>1$) that is non-negative and integrable on the real line and satisfies condition (1).
Received: 12.02.2001
Bibliographic databases:
Document Type: Article
MSC: 30D10, 30D15, 60E05
Language: Russian
Citation: A. I. Il'inskii, “On possible deterioration of smoothness under the operation of convolution”, Mat. Fiz. Anal. Geom., 8:2 (2001), 175–188
Citation in format AMSBIB
\Bibitem{Ili01}
\by A.~I.~Il'inskii
\paper On possible deterioration of smoothness under the operation of convolution
\jour Mat. Fiz. Anal. Geom.
\yr 2001
\vol 8
\issue 2
\pages 175--188
\mathnet{http://mi.mathnet.ru/jmag338}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1859878}
\zmath{https://zbmath.org/?q=an:0999.60014}
Linking options:
  • https://www.mathnet.ru/eng/jmag338
  • https://www.mathnet.ru/eng/jmag/v8/i2/p175
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:139
    Full-text PDF :50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024