Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2001, Volume 8, Number 2, Pages 158–174 (Mi jmag337)  

Functional model of bounded operator

V. A. Zolotarev

V. N. Karazin Kharkiv National University, Faculty of Mathematics and Mechanics
Abstract: The constructing of functional model for any bounded operator $T$ (contracting or not) in Hilbert space $H$ is done. It is shown that existence conditions for wave operarators $W_\pm$ within P. Lax–R. Phillips scattering scheme lead in this case to spaces $l_\beta^2$ with the weight $ \beta.$ These facts lead to Hardy spaces in the ring with the weight $W(e^{i \theta})$ which is defined by the characteristic function $S_\Delta(e^{i\theta})$ of operator $T$.
Received: 12.12.2000
Bibliographic databases:
Document Type: Article
MSC: 470A45
Language: Russian
Citation: V. A. Zolotarev, “Functional model of bounded operator”, Mat. Fiz. Anal. Geom., 8:2 (2001), 158–174
Citation in format AMSBIB
\Bibitem{Zol01}
\by V.~A.~Zolotarev
\paper Functional model of bounded operator
\jour Mat. Fiz. Anal. Geom.
\yr 2001
\vol 8
\issue 2
\pages 158--174
\mathnet{http://mi.mathnet.ru/jmag337}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1859877}
\zmath{https://zbmath.org/?q=an:1016.47012}
Linking options:
  • https://www.mathnet.ru/eng/jmag337
  • https://www.mathnet.ru/eng/jmag/v8/i2/p158
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:180
    Full-text PDF :47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024