Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2001, Volume 8, Number 1, Pages 17–41 (Mi jmag328)  

On the independence of the linear and quadratic forms on independent random variables

K. I. Kabanov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov
Abstract: We consider generalizations of the Laha's theorem on the independence of the sample mean and the quadratic form for any linear and quadratic forms.
Received: 17.02.2000
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: K. I. Kabanov, “On the independence of the linear and quadratic forms on independent random variables”, Mat. Fiz. Anal. Geom., 8:1 (2001), 17–41
Citation in format AMSBIB
\Bibitem{Kab01}
\by K.~I.~Kabanov
\paper On the independence of the linear and quadratic forms on independent random variables
\jour Mat. Fiz. Anal. Geom.
\yr 2001
\vol 8
\issue 1
\pages 17--41
\mathnet{http://mi.mathnet.ru/jmag328}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846356}
\zmath{https://zbmath.org/?q=an:1061.62512}
Linking options:
  • https://www.mathnet.ru/eng/jmag328
  • https://www.mathnet.ru/eng/jmag/v8/i1/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024