|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2002, Volume 9, Number 4, Pages 642–647
(Mi jmag321)
|
|
|
|
On the growth of meromorphic functions
I. I. Marchenkoab a University of Szczecin, Institute of Mathematics, 15 Wielkopolska Str., Szczecin, 70451, Poland
b Department of Mechanics and Mathematics, V. N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine
Abstract:
We obtained the estimates for upper and lower logarithmic density of the set $A(\gamma)=\Bigl\{r:\sum\limits_{k=1}^q\mathcal L(r,a_k,f)<2B(\gamma,\Delta(0,f'))T(r,f)\Bigr\}$, where $B(\gamma,\Delta)$ is Shea's constant, $\Delta(0,f')$ is Valiron's deficiency of the derivative of the function $f$ at zero.
Received: 17.10.2002
Citation:
I. I. Marchenko, “On the growth of meromorphic functions”, Mat. Fiz. Anal. Geom., 9:4 (2002), 642–647
Linking options:
https://www.mathnet.ru/eng/jmag321 https://www.mathnet.ru/eng/jmag/v9/i4/p642
|
Statistics & downloads: |
Abstract page: | 113 | Full-text PDF : | 43 |
|