Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2002, Volume 9, Number 4, Pages 622–641 (Mi jmag320)  

This article is cited in 2 scientific papers (total in 2 papers)

The L. de Branges spaces and functional models of non-dissipative operators

V. A. Zolotarev

V. N. Karazin Kharkiv National University
Full-text PDF (294 kB) Citations (2)
Abstract: The functional model for any bounded non-dissipative operator $A$ in Hilbert space $H$ with $\operatorname{rank}\Bigl(\dfrac{A-A^*}i\Bigr)=2$ has been constructed. This model is realized by the operator of multiplication on independent variable in the L. de Branges space of holomorphic functions. In difference with the L. de Branges space of entire functions the spaces of holomorphic in $\mathbb C$ functions with predefined singularities on the real axis have been studied. This allowed to construct the functional models for non-dissipative operators with real spectrum when $\operatorname{rank}\Bigl(\dfrac{A-A^*}i\Bigr)=2$.
Received: 24.05.2001
Bibliographic databases:
Document Type: Article
MSC: 47A45
Language: Russian
Citation: V. A. Zolotarev, “The L. de Branges spaces and functional models of non-dissipative operators”, Mat. Fiz. Anal. Geom., 9:4 (2002), 622–641
Citation in format AMSBIB
\Bibitem{Zol02}
\by V.~A.~Zolotarev
\paper The L.~de~Branges spaces and functional models of~non-dissipative operators
\jour Mat. Fiz. Anal. Geom.
\yr 2002
\vol 9
\issue 4
\pages 622--641
\mathnet{http://mi.mathnet.ru/jmag320}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1965303}
\zmath{https://zbmath.org/?q=an:1059.47007}
Linking options:
  • https://www.mathnet.ru/eng/jmag320
  • https://www.mathnet.ru/eng/jmag/v9/i4/p622
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024