Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2002, Volume 9, Number 4, Pages 604–621 (Mi jmag319)  

This article is cited in 1 scientific paper (total in 1 paper)

Intersection number and eigenvectors of quasilinear Hilbert–Schmidt operators

Ya. M. Dymarskii

Department of Mathematics, Lugansk State Pedagogical University, 2 Oboronnaya Str., Lugansk, 91011, Ukraine
Full-text PDF (276 kB) Citations (1)
Abstract: For the spesial class of quasilinear operators a topologocal construction is described with the help of which existence theorems of normalized eigenvectors may be obtained. The construction is based on utilization of an intersection number of two Hilbert submanifolds one of which is generated by the given operator and another is anchanged.
Received: 26.11.2001
Bibliographic databases:
Document Type: Article
Language: English
Citation: Ya. M. Dymarskii, “Intersection number and eigenvectors of quasilinear Hilbert–Schmidt operators”, Mat. Fiz. Anal. Geom., 9:4 (2002), 604–621
Citation in format AMSBIB
\Bibitem{Dym02}
\by Ya.~M.~Dymarskii
\paper Intersection number and eigenvectors of quasilinear Hilbert--Schmidt operators
\jour Mat. Fiz. Anal. Geom.
\yr 2002
\vol 9
\issue 4
\pages 604--621
\mathnet{http://mi.mathnet.ru/jmag319}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1965302}
\zmath{https://zbmath.org/?q=an:1058.47053}
Linking options:
  • https://www.mathnet.ru/eng/jmag319
  • https://www.mathnet.ru/eng/jmag/v9/i4/p604
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024