|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2002, Volume 9, Number 1, Pages 101–106
(Mi jmag276)
|
|
|
|
On non-quasianalytic representations of Abelian groups
G. M. Feldmana, Quoc-Phong Vub a Mathematics Division, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkov, 61103, Ukraine
b Department of Mathematics, Ohio University, 321 Morton Hall Athens, Ohio 45 701, USA
Abstract:
We study representations $T_g$ of a locally compact Abelian group $G$ with a scattered spectrum satisfying the conditions: there exists $S \subset G$ such that $G=S-S$ and for all $s\in S$
$$
\|T_{ns}\|=o(n^k), \ \ k \ge 1, \ \ \ln\|T_{-ns}\|=o({\sqrt{n}}), \ \ \text{as}\ n\to+\infty.
$$
Received: 16.11.2001
Citation:
G. M. Feldman, Quoc-Phong Vu, “On non-quasianalytic representations of Abelian groups”, Mat. Fiz. Anal. Geom., 9:1 (2002), 101–106
Linking options:
https://www.mathnet.ru/eng/jmag276 https://www.mathnet.ru/eng/jmag/v9/i1/p101
|
Statistics & downloads: |
Abstract page: | 193 | Full-text PDF : | 56 |
|