|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2003, Volume 10, Number 4, Pages 490–497
(Mi jmag263)
|
|
|
|
On a criterion of belonging to the Hardy class $H_p(\mathbb C_{+})$ up to exponential factor
Seçil Gergüna, I. V. Ostrovskiiba a Department of Mathematics, Bilkent University, 06800 Bilkent, Ankara, Turkey
b Mathematical Divizion, BB. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47, Lenin Ave., Kharkiv, 61103, Ukraine
Abstract:
A criterion of belonging to the Hardy class $H_p(\mathbb C_{+})$ up to factor $e^{ikz}$ is obtained. It deals with functions $f$ analytic in $\mathbb C_{+}$, having Blaschke zero-sets, and satisfying the condition $|f(z)|\leq \exp\{|{\mathrm{Im}}\,z|^{-1}\exp(o(|z|))\}$, $z\to\infty$, $z\in\mathbb C_{+}$.
Received: 16.12.2002
Citation:
Seçil Gergün, I. V. Ostrovskii, “On a criterion of belonging to the Hardy class $H_p(\mathbb C_{+})$ up to exponential factor”, Mat. Fiz. Anal. Geom., 10:4 (2003), 490–497
Linking options:
https://www.mathnet.ru/eng/jmag263 https://www.mathnet.ru/eng/jmag/v10/i4/p490
|
|