Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2003, Volume 10, Number 4, Pages 481–489 (Mi jmag262)  

About integral of Weber–Shafheitlin

I. S. Belov

Khar'kov Polytechnical University
Abstract: Let $L_{\lambda}^{p}$ be the function space at half-line with the norm $\|f\|_{p,\lambda}^{p}= \int_{0}^{\infty}|f(x)|^{p}x^{-\lambda}\,dx$. In the work the operators $A_{\mu}$ of multiplicative convolution with Bessel function $ A_{\mu}f(x)=\int_{0}^{\infty}J_{\mu}(xt)f(t)t^{-\lambda}\,dt$ are considered and their following propeties are proved. The operators $A_{\mu}$, $\mu \geq 0$, are bounded on $L^{2}(\lambda)$, $-1\leq \lambda\leq 1$. $A_{\mu}$, $\mu>0$, are bounded on $L_{\lambda}^{p}$, $1\leq p\leq\infty$, but $A_{0}$ is unbounded on $L_{1}^{p}$, $1\leq p\leq \infty$. The operators $A_{\mu}$ are unbounded on $ L_{\lambda}^{p}$ $p\not= 2$, $1\leq \lambda < 1$. With some relations between values $(\mu, \nu, \lambda, p)$ the products $A_{\nu}A_{\mu}$ are bounded on $L_{\lambda}^{p}$.
Received: 24.09.2002
Bibliographic databases:
Document Type: Article
MSC: 44A35, 26B99
Language: Russian
Citation: I. S. Belov, “About integral of Weber–Shafheitlin”, Mat. Fiz. Anal. Geom., 10:4 (2003), 481–489
Citation in format AMSBIB
\Bibitem{Bel03}
\by I.~S.~Belov
\paper About integral of Weber--Shafheitlin
\jour Mat. Fiz. Anal. Geom.
\yr 2003
\vol 10
\issue 4
\pages 481--489
\mathnet{http://mi.mathnet.ru/jmag262}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2020821}
\zmath{https://zbmath.org/?q=an:1064.45012}
Linking options:
  • https://www.mathnet.ru/eng/jmag262
  • https://www.mathnet.ru/eng/jmag/v10/i4/p481
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025