|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2003, Volume 10, Number 4, Pages 481–489
(Mi jmag262)
|
|
|
|
About integral of Weber–Shafheitlin
I. S. Belov Khar'kov Polytechnical University
Abstract:
Let $L_{\lambda}^{p}$ be the function space at half-line with the norm $\|f\|_{p,\lambda}^{p}= \int_{0}^{\infty}|f(x)|^{p}x^{-\lambda}\,dx$. In the work the operators $A_{\mu}$ of multiplicative convolution with Bessel function $ A_{\mu}f(x)=\int_{0}^{\infty}J_{\mu}(xt)f(t)t^{-\lambda}\,dt$ are considered and their following propeties are proved. The operators $A_{\mu}$, $\mu \geq 0$, are bounded on $L^{2}(\lambda)$, $-1\leq \lambda\leq 1$. $A_{\mu}$, $\mu>0$, are bounded on $L_{\lambda}^{p}$, $1\leq p\leq\infty$, but $A_{0}$ is unbounded on $L_{1}^{p}$, $1\leq p\leq \infty$. The operators $A_{\mu}$ are unbounded on $ L_{\lambda}^{p}$ $p\not= 2$, $1\leq \lambda < 1$. With some relations between values $(\mu, \nu, \lambda, p)$ the products $A_{\nu}A_{\mu}$ are bounded on $L_{\lambda}^{p}$.
Received: 24.09.2002
Citation:
I. S. Belov, “About integral of Weber–Shafheitlin”, Mat. Fiz. Anal. Geom., 10:4 (2003), 481–489
Linking options:
https://www.mathnet.ru/eng/jmag262 https://www.mathnet.ru/eng/jmag/v10/i4/p481
|
|