Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2003, Volume 10, Number 1, Pages 40–48 (Mi jmag230)  

This article is cited in 2 scientific papers (total in 2 papers)

About the behavior of isoperimetric difference when turning to parallel body and proving the generalized inequality of Hadwiger

V. I. Diskant

Cherkasy State Technological University
Full-text PDF (226 kB) Citations (2)
Abstract: The following inequalities are proved:
\begin{gather*} V_1^n(A,B)-V(B)V^{n-1}(A)\ge V_1^n(A_{-p}(B),B)-V(B)V^{n-1}(A_{-p}(B)), \\ V_1^n(A,B)-V(B_A)V^{n-1}(A)\ge V_1^n(A_{-p}(B),B)-V(B_A)V^{n-1}(A_{-p}(B)), \\ S^n(A,B)\ge n^n V(B_A)V^{n-1}(A)+S^n(A_{-q}(B),B), \end{gather*}
in which $V(A)$, $V(B)$ — the volumes of convex bodies $A$ and $B$ in $R^n$ ($n\ge 2$), $V_1(A,B)$ — first mixed volume bodies $A$ and $B$, $S(A,B)=nV_1(A,B)$, $q$ — coefficient of capacity $B$ in $A$, $p\in [0,q]$, $A_{-p}(B)$ — internal body which is to parallel to body $A$ relatively to $B$ on the distance $p$, $B_A$ — form-body of body $A$ relatively to $B$. The left part of the first inequality is the isoperimetric difference of $A$ relatively to $B$. The first inequality confirms that when turning from $A$ to $A_{-p}(B)$ the isoperimetric difference relatively to $B$ does not increase. The second inequality proves the first one taking into account the peculiarities on the border of body $A$ relatively to $B$. The third inequality proves the generalization of the inequality of Hadwiger [4] taking into account the degeneracy of $A_{-q}(B)$.
Received: 17.12.2001
Bibliographic databases:
Document Type: Article
MSC: 52A38, 52A40
Language: Russian
Citation: V. I. Diskant, “About the behavior of isoperimetric difference when turning to parallel body and proving the generalized inequality of Hadwiger”, Mat. Fiz. Anal. Geom., 10:1 (2003), 40–48
Citation in format AMSBIB
\Bibitem{Dis03}
\by V.~I.~Diskant
\paper About the behavior of isoperimetric difference when turning to parallel body and proving the generalized inequality of Hadwiger
\jour Mat. Fiz. Anal. Geom.
\yr 2003
\vol 10
\issue 1
\pages 40--48
\mathnet{http://mi.mathnet.ru/jmag230}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1937045}
\zmath{https://zbmath.org/?q=an:1062.52005}
Linking options:
  • https://www.mathnet.ru/eng/jmag230
  • https://www.mathnet.ru/eng/jmag/v10/i1/p40
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:139
    Full-text PDF :54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024