Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2004, Volume 11, Number 4, Pages 470–483 (Mi jmag221)  

On conditionally convergent series

Vladimir Logvinenko

Mathematics Department, De Anza College, 21250 Stevens Creek Blvd., Cupertino, Ca 95014-5793, US
Abstract: The most interesting result of the paper is that for any two complementary subsets $A$ and $B$ of the set of positive odd integers there exists such a sequence $\{\alpha_k\}_{k=1}^\infty\subset[-1,1]$ that
\begin{gather*} \forall\,m\in A:\text{ the series }\sum_{k=1}^\infty\alpha_k^m\text{ is convergent and} \\ \forall\,m\in B:\text{ the series }\sum_{k=1}^\infty\alpha_k^m\text{ is divergent.} \end{gather*}
Using the map $\overrightarrow{x}\longmapsto\|\overrightarrow{x}\|^{\lambda}\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}$ as a substitute of the power function, one can prove similar results for vectors and positive not necessarily integer exponents $\lambda$.
Received: 23.09.2004
Bibliographic databases:
Document Type: Article
MSC: 40A05
Language: English
Citation: Vladimir Logvinenko, “On conditionally convergent series”, Mat. Fiz. Anal. Geom., 11:4 (2004), 470–483
Citation in format AMSBIB
\Bibitem{Log04}
\by Vladimir Logvinenko
\paper On conditionally convergent series
\jour Mat. Fiz. Anal. Geom.
\yr 2004
\vol 11
\issue 4
\pages 470--483
\mathnet{http://mi.mathnet.ru/jmag221}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2114006}
\zmath{https://zbmath.org/?q=an:1071.40001}
Linking options:
  • https://www.mathnet.ru/eng/jmag221
  • https://www.mathnet.ru/eng/jmag/v11/i4/p470
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025