|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2004, Volume 11, Number 4, Pages 470–483
(Mi jmag221)
|
|
|
|
On conditionally convergent series
Vladimir Logvinenko Mathematics Department, De Anza College, 21250 Stevens Creek Blvd., Cupertino, Ca 95014-5793, US
Abstract:
The most interesting result of the paper is that for any two complementary subsets $A$ and $B$ of the set of positive odd integers there exists such a sequence $\{\alpha_k\}_{k=1}^\infty\subset[-1,1]$ that
\begin{gather*}
\forall\,m\in A:\text{ the series }\sum_{k=1}^\infty\alpha_k^m\text{ is convergent and}
\\
\forall\,m\in B:\text{ the series }\sum_{k=1}^\infty\alpha_k^m\text{ is divergent.}
\end{gather*}
Using the map $\overrightarrow{x}\longmapsto\|\overrightarrow{x}\|^{\lambda}\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}$ as a substitute of the power function, one can prove similar results for vectors and positive not necessarily integer exponents $\lambda$.
Received: 23.09.2004
Citation:
Vladimir Logvinenko, “On conditionally convergent series”, Mat. Fiz. Anal. Geom., 11:4 (2004), 470–483
Linking options:
https://www.mathnet.ru/eng/jmag221 https://www.mathnet.ru/eng/jmag/v11/i4/p470
|
|