Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2004, Volume 11, Number 4, Pages 449–469 (Mi jmag220)  

This article is cited in 6 scientific papers (total in 6 papers)

On entire functions having Taylor sections with only real zeros

Olga M. Katkovaa, Tatjana Lobova-Eisnerb, Anna M. Vishnyakovaa

a Department of Mechanics and Mathematics, V. N. Karazin Kharkov National University, 4 Svobody Sq., 4, Kharkov, 61077, Ukraine
b Fakultät für Mathematik und Physik, Eberhard Karls Universität Tübingen, D8Q02, Auf der Morgenstelle 14, 72076, Tübingen
Full-text PDF (326 kB) Citations (6)
Abstract: We investigate power series with positive coefficients having sections with only real zeros. For an entire function $f(z)=\sum_{k=0}^\infty a_kz^k$, $a_k>0$, we denote by $q_n(f):=\frac{a_{n-1}^2}{a_{n-2}a_n}$, $n\ge 2$. The following problem remains open: which entire function with positive coefficients and sections with only real zeros has the minimal possible $\liminf_{n\to \infty}q_n(f)$? We prove that the extremal function in the class of such entire functions with additional condition $\exists\,\lim_{n\to \infty}q_n(f)$ is the function of the form $f_a(z):=\sum_{k=0}^\infty\frac{z^k}{k!a^{k^2}}$. We answer also the following questions: for which $a$ do the function $f_a(z)$ and the function $y_a(z):=1+\sum_{k=1}^\infty\frac{z^k}{(a^k-1)(a^{k-1}-1)\dotsb(a-1)}$, $a>1$, have sections with only real zeros?
Received: 22.09.2004
Bibliographic databases:
Document Type: Article
MSC: 30D15, 30C15, 26C10
Language: English
Citation: Olga M. Katkova, Tatjana Lobova-Eisner, Anna M. Vishnyakova, “On entire functions having Taylor sections with only real zeros”, Mat. Fiz. Anal. Geom., 11:4 (2004), 449–469
Citation in format AMSBIB
\Bibitem{KatLobVis04}
\by Olga M. Katkova, Tatjana Lobova-Eisner, Anna M. Vishnyakova
\paper On entire functions having Taylor sections with only real zeros
\jour Mat. Fiz. Anal. Geom.
\yr 2004
\vol 11
\issue 4
\pages 449--469
\mathnet{http://mi.mathnet.ru/jmag220}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2114005}
\zmath{https://zbmath.org/?q=an:1078.30022}
Linking options:
  • https://www.mathnet.ru/eng/jmag220
  • https://www.mathnet.ru/eng/jmag/v11/i4/p449
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :92
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024