|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2004, Volume 11, Number 4, Pages 449–469
(Mi jmag220)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
On entire functions having Taylor sections with only real zeros
Olga M. Katkovaa, Tatjana Lobova-Eisnerb, Anna M. Vishnyakovaa a Department of Mechanics and Mathematics, V. N. Karazin Kharkov National University, 4 Svobody Sq., 4, Kharkov, 61077, Ukraine
b Fakultät für Mathematik und Physik, Eberhard Karls Universität Tübingen, D8Q02, Auf der Morgenstelle 14, 72076, Tübingen
Abstract:
We investigate power series with positive coefficients having sections with only real zeros. For an entire function $f(z)=\sum_{k=0}^\infty a_kz^k$, $a_k>0$, we denote by $q_n(f):=\frac{a_{n-1}^2}{a_{n-2}a_n}$, $n\ge 2$. The following problem remains open: which entire function with positive coefficients and sections with only real zeros has the minimal possible $\liminf_{n\to \infty}q_n(f)$? We prove that the extremal function in the class of such entire functions with additional condition $\exists\,\lim_{n\to \infty}q_n(f)$ is the function of the form $f_a(z):=\sum_{k=0}^\infty\frac{z^k}{k!a^{k^2}}$. We answer also the following questions: for which $a$ do the function $f_a(z)$ and the function $y_a(z):=1+\sum_{k=1}^\infty\frac{z^k}{(a^k-1)(a^{k-1}-1)\dotsb(a-1)}$, $a>1$, have sections with only real zeros?
Received: 22.09.2004
Citation:
Olga M. Katkova, Tatjana Lobova-Eisner, Anna M. Vishnyakova, “On entire functions having Taylor sections with only real zeros”, Mat. Fiz. Anal. Geom., 11:4 (2004), 449–469
Linking options:
https://www.mathnet.ru/eng/jmag220 https://www.mathnet.ru/eng/jmag/v11/i4/p449
|
|