Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2004, Volume 11, Number 4, Pages 408–420 (Mi jmag217)  

This article is cited in 4 scientific papers (total in 4 papers)

Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients

Leonid Golinskii

Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkov, 61103, Ukraine
Full-text PDF (256 kB) Citations (4)
Abstract: Orthogonal polynomials and measures on the unit circle are fully determined by their Verblunsky coefficients through the Szegő recurrences. We study measures $\mu$ from the Szegő class whose Verblunsky coefficients vanish off a sequence of positive integers with exponentially growing gaps. All such measures turn out to be absolutely continuous on the circle. We also gather some information about the density function $\mu'$.
Received: 12.01.2004
Bibliographic databases:
Document Type: Article
MSC: 42C05
Language: English
Citation: Leonid Golinskii, “Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients”, Mat. Fiz. Anal. Geom., 11:4 (2004), 408–420
Citation in format AMSBIB
\Bibitem{Gol04}
\by Leonid Golinskii
\paper Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients
\jour Mat. Fiz. Anal. Geom.
\yr 2004
\vol 11
\issue 4
\pages 408--420
\mathnet{http://mi.mathnet.ru/jmag217}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2114002}
\zmath{https://zbmath.org/?q=an:1076.42018}
Linking options:
  • https://www.mathnet.ru/eng/jmag217
  • https://www.mathnet.ru/eng/jmag/v11/i4/p408
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024