Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2004, Volume 11, Number 4, Pages 380–407 (Mi jmag216)  

This article is cited in 1 scientific paper (total in 1 paper)

On the I. I. Privalov theorem on the Hilbert transform of Lipschitz functions

Yu. S. Belov, V. P. Havin

St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (452 kB) Citations (1)
Abstract: It is known that the Hilbert transform $h(f)$ of a bounded Lipschitz (order one) function $f$ on $\mathbb{R}$ is uniformly continuous ($h$ is understood as the singular integral operator with the Cauchy kernel regularized at infinity, so that $h$ is defined on the class of all functions summable on $\mathbb{R}$ w.r. to the Poisson measure). It is shown that the above theorem does not hold (in a very strong sense) for unbounded Lipschitz f's. Conditions sufficient (and “almost necessary”) for $h(f)$ to be Lipschitz are given. The results are motivated by some uniqueness problems of the Fourier analysis.
Received: 26.09.2004
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. S. Belov, V. P. Havin, “On the I. I. Privalov theorem on the Hilbert transform of Lipschitz functions”, Mat. Fiz. Anal. Geom., 11:4 (2004), 380–407
Citation in format AMSBIB
\Bibitem{BelHav04}
\by Yu.~S.~Belov, V.~P.~Havin
\paper On the I.\,I.~Privalov theorem on the Hilbert transform of~Lipschitz functions
\jour Mat. Fiz. Anal. Geom.
\yr 2004
\vol 11
\issue 4
\pages 380--407
\mathnet{http://mi.mathnet.ru/jmag216}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2114001}
\zmath{https://zbmath.org/?q=an:1093.42007}
Linking options:
  • https://www.mathnet.ru/eng/jmag216
  • https://www.mathnet.ru/eng/jmag/v11/i4/p380
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024