Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2004, Volume 11, Number 1, Pages 114–121 (Mi jmag193)  

This article is cited in 4 scientific papers (total in 4 papers)

The inverse problem for a class of ordinary differential operators with periodic coefficients

R. F. Efendiev

Baku State University
Full-text PDF (229 kB) Citations (4)
Abstract: The direct and inverse problem of spectral analyses of a class of ordinary differential equations of order $2m$ with coefficients polynomially depending on the spectral parameter are investigated. It is shown that, the spectrum of the operator pencil is continuous, fill in the rays $\{k\omega_j/\, 0\le k<\infty,\ j=\overline{0,2m-1}\}$, $\omega_j=\exp\left(\frac{ij\pi}{m}\right)$, and there exist spectral singularities on the continues spectrum which coincide with the numbers $\frac{n\omega_j}2$, $j=\overline{0,2m-1}$, $n=1,2,\dots$ The inverse problem of reconstructing of the coefficients by generalized normalizing numbers is solved.
Received: 05.02.2003
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: R. F. Efendiev, “The inverse problem for a class of ordinary differential operators with periodic coefficients”, Mat. Fiz. Anal. Geom., 11:1 (2004), 114–121
Citation in format AMSBIB
\Bibitem{Efe04}
\by R.~F.~Efendiev
\paper The inverse problem for a class of ordinary differential operators with periodic coefficients
\jour Mat. Fiz. Anal. Geom.
\yr 2004
\vol 11
\issue 1
\pages 114--121
\mathnet{http://mi.mathnet.ru/jmag193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2046357}
\zmath{https://zbmath.org/?q=an:1087.34504}
Linking options:
  • https://www.mathnet.ru/eng/jmag193
  • https://www.mathnet.ru/eng/jmag/v11/i1/p114
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :88
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025