Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2005, Volume 12, Number 1, Pages 103–106 (Mi jmag174)  

This article is cited in 1 scientific paper (total in 1 paper)

Short Notes

The Haar system in $L_1$ is monotonically boundedly complete

Vladimir Kadets

Department of Mechanics and Mathematics, V.N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov, 61077, Ukraine
Full-text PDF (198 kB) Citations (1)
Abstract: Answering a question posed by J. R. Holub we show that for the normalized Haar system $\{h_n\}$ in $L_1[0,1]$ whenever $\{a_n\}$ is a sequence of scalars with $|a_n|$ decreasing monotonically and with $\sup_N\|\sum_{n=1}^N a_n h_n\| < \infty$, then $ \sum_{n=1}^\infty a_n h_n$ converges in $L_1[0,1]$.
Key words and phrases: Haar system; martingale; monotonically boundedly complete basis.
Received: 13.08.2004
Bibliographic databases:
Document Type: Article
MSC: 46B15, 60G46
Language: English
Citation: Vladimir Kadets, “The Haar system in $L_1$ is monotonically boundedly complete”, Mat. Fiz. Anal. Geom., 12:1 (2005), 103–106
Citation in format AMSBIB
\Bibitem{Kad05}
\by Vladimir Kadets
\paper The Haar system in $L_1$ is monotonically boundedly complete
\jour Mat. Fiz. Anal. Geom.
\yr 2005
\vol 12
\issue 1
\pages 103--106
\mathnet{http://mi.mathnet.ru/jmag174}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2135427}
\zmath{https://zbmath.org/?q=an:1091.46008}
Linking options:
  • https://www.mathnet.ru/eng/jmag174
  • https://www.mathnet.ru/eng/jmag/v12/i1/p103
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025