Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2008, Volume 4, Number 3, Pages 327–345 (Mi jmag100)  

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic properties of Hilbert geometry

A. A. Borisenko, E. A. Olin

Department of Mechanics and Mathematics, V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkiv, 61077, Ukraine
Full-text PDF (345 kB) Citations (2)
References:
Abstract: It is shown that the spheres in Hilbert geometry have the same volume growth entropy as those in the Lobachevsky space. Asymptotic estimates for the ratio of the volume of metric ball to the area of the metric sphere in Hilbert geometry are given. Derived estimates agree with the well-known fact in the Lobachevsky space.
Key words and phrases: Hilbert geometry, Finsler geometry, balls, spheres, volume, area, entropy.
Received: 02.11.2007
Bibliographic databases:
Document Type: Article
MSC: 53C60, 58B20, 52A20
Language: English
Citation: A. A. Borisenko, E. A. Olin, “Asymptotic properties of Hilbert geometry”, Zh. Mat. Fiz. Anal. Geom., 4:3 (2008), 327–345
Citation in format AMSBIB
\Bibitem{BorOli08}
\by A.~A.~Borisenko, E.~A.~Olin
\paper Asymptotic properties of Hilbert geometry
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2008
\vol 4
\issue 3
\pages 327--345
\mathnet{http://mi.mathnet.ru/jmag100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2444106}
\zmath{https://zbmath.org/?q=an:1167.53066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000258721100001}
Linking options:
  • https://www.mathnet.ru/eng/jmag100
  • https://www.mathnet.ru/eng/jmag/v4/i3/p327
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :70
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024