Journal of High Energy Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of High Energy Physics, 2014, Volume 18, Issue 1, 156, 50 pp.
DOI: https://doi.org/10.1007/JHEP01(2014)156
(Mi jhep12)
 

This article is cited in 19 scientific papers (total in 19 papers)

Minimal Liouville gravity correlation numbers from Douglas string equation

A. Belavinabc, B. Dubrovindef, B. Mukhametzhanovbg

a Institute for Information Transmission Problems, Bol’shoy karetni pereulok 19, 127994, Moscow, Russia
b L.D. Landau Institute for Theoretical Physics, prospect academica Semenova 1a, 142432 Chernogolovka, Russia
c Moscow Institute of Physics and Technology, Insitutsky pereulok 9, 141700 Dolgoprudny, Russia
d International School of Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
e N.N. Bogolyubov Laboratory for Geometrical Methods in Mathematical Physics, Moscow State University “M.V.Lomonosov”, Leninskie Gory 1, 119899 Moscow, Russia
f V.A. Steklov Mathematical Institute, Gubkina street 8, 119991 Moscow, Russia
g Department of Physics, Harvard University, 17 Oxford street, 02138 Cambridge, U.S.A.
Citations (19)
Abstract: We continue the study of (q,p) Minimal Liouville Gravity with the help of Douglas string equation. We generalize the results of [1, 2], where Lee–Yang series (2,2s+1) was studied, to (3,3s+p0) Minimal Liouville Gravity, where p0=1,2. We demonstrate that there exist such coordinates τm,n on the space of the perturbed Minimal Liouville Gravity theories, in which the partition function of the theory is determined by the Douglas string equation. The coordinates τm,n are related in a non-linear fashion to the natural coupling constants λm,n of the perturbations of Minimal Lioville Gravity by the physical operators Om,n. We find this relation from the requirement that the correlation numbers in Minimal Liouville Gravity must satisfy the conformal and fusion selection rules. After fixing this relation we compute three- and four-point correlation numbers when they are not zero. The results are in agreement with the direct calculations in Minimal Liouville Gravity available in the literature [3–5].
Funding agency Grant number
Russian Foundation for Basic Research 13-01-90614
12-01-00836
Ministry of Education and Science of the Russian Federation 8528
8410
2010-220-01-077
European Research Council Advanced Grant FroM-PDE
PRIN 2010-11
The work of A.B. and B.M. was supported by RFBR grants no. 13-01-90614, 12-01-00836-a and by the Russian Ministry of Education and Science under the grants no. 8528 and no. 8410. The work of B.D. was partially supported by the European Research Council Advanced Grant FroM-PDE, by the Russian Federation Government Grant No. 2010-220-01-077 and by PRIN 2010-11 Grant “Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions” of Italian Ministry of Universities and Researches.
Received: 05.11.2013
Revised: 16.12.2013
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/jhep12
  • This publication is cited in the following 19 articles:
    1. A. Artemev, V. Belavin, “Torus one-point correlation numbers in minimal Liouville gravity”, J. High Energ. Phys., 2023:2 (2023)  crossref
    2. Alexander Gorsky, Vladimir Kazakov, Fedor Levkovich-Maslyuk, Victor Mishnyakov, “A flow in the forest”, J. High Energ. Phys., 2023:3 (2023)  crossref
    3. Boris Dubrovin, Di Yang, Don Zagier, “On tau-functions for the KdV hierarchy”, Sel. Math. New Ser., 27:1 (2021)  crossref
    4. Alexander Alexandrov, Hisayoshi Muraki, Chaiho Rim, “From minimal gravity to open intersection theory”, Phys. Rev. D, 100:12 (2019)  crossref
    5. Konstantin Aleshkin, Vladimir Belavin, “Open minimal strings and open Gelfand-Dickey hierarchies”, J. High Energ. Phys., 2019:2 (2019)  crossref
    6. Aditya Bawane, Hisayoshi Muraki, Chaiho Rim, “Dual Frobenius manifolds of minimal gravity on disk”, J. High Energ. Phys., 2018:3 (2018)  crossref
    7. Konstantin Aleshkin, Alexander Belavin, “A new approach for computing the geometry of the moduli spaces for a Calabi–Yau manifold”, J. Phys. A: Math. Theor., 51:5 (2018), 055403  crossref
    8. Konstantin Aleshkin, Vladimir Belavin, Chaiho Rim, “Minimal gravity and Frobenius manifolds: bulk correlation on sphere and disk”, J. High Energ. Phys., 2017:11 (2017)  crossref
    9. Alexander Belavin, Vladimir Belavin, “On exact solution of topological CFT models based on Kazama–Suzuki cosets”, J. Phys. A: Math. Theor., 49:41 (2016), 41LT02  crossref
    10. A. A. Belavin, D. Gepner, Ya. A. Kononov, “Flat coordinates for Saito Frobenius manifolds and string theory.”, Theoret. and Math. Phys., 189:3 (2016), 1775–1789  mathnet  mathnet  crossref  crossref  isi  scopus
    11. Alexander Belavin, Vladimir Belavin, “Flat structures on the deformations of Gepner chiral rings”, J. High Energ. Phys., 2016:10 (2016)  crossref
    12. A. A. Belavin, V. A. Belavin, “Minimal string theory and the Douglas equation”, Int. J. Mod. Phys. A, 31:28n29 (2016), 1645038  crossref
    13. Konstantin Aleshkin, Vladimir Belavin, “On the construction of the correlation numbers in Minimal Liouville Gravity”, J. High Energ. Phys., 2016:11 (2016)  crossref
    14. A Belavin, L Spodyneiko, “Flat structures on Frobenius manifolds in the case of irrelevant deformations”, J. Phys. A: Math. Theor., 49:49 (2016), 495401  crossref
    15. V Belavin, Yu Rud, “Matrix model approach to minimal Liouville gravity revisited”, J. Phys. A: Math. Theor., 48:18 (2015), 18FT01  crossref
    16. V. Belavin, “Correlation functions in unitary minimal Liouville gravity and Frobenius manifolds”, J. High Energ. Phys., 2015:2 (2015)  crossref
    17. Lev Spodyneiko, “Minimal Liouville gravity on the torus via the Douglas string equation”, J. Phys. A: Math. Theor., 48:6 (2015), 065401  crossref
    18. V. Belavin, “Unitary minimal Liouville gravity and Frobenius manifolds”, J. High Energ. Phys., 2014:7 (2014)  crossref
    19. A.A. Belavin, V.A. Belavin, “Frobenius manifolds, integrable hierarchies and minimal Liouville gravity”, J. High Energ. Phys., 2014:9 (2014)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:174
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025