Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2023, Volume 117, Issue 5, Pages 377–384
DOI: https://doi.org/10.31857/S1234567823050099
(Mi jetpl6887)
 

This article is cited in 7 scientific papers (total in 7 papers)

CONDENSED MATTER

Liquid–crystal structure inheritance in machine learning potentials for network-forming systems

I. A. Balyakinab, R. E. Ryltseva, N. M. Chtchelkachevac

a Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620016 Russia
b Research and Education Center Nanomaterials and Nanotechnologies, Ural Federal University, Yekaterinburg, 620002 Russia
c Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, 108840 Russia
References:
Abstract: It has been studied whether machine learning interatomic potentials parameterized with only disordered configurations corresponding to liquid can describe the properties of crystalline phases and predict their structure. The study has been performed for a network-forming system SiO$_2$, which has numerous polymorphic phases significantly different in structure and density. Using only high-temperature disordered configurations, a machine learning interatomic potential based on artificial neural networks (DeePMD model) has been parameterized. The potential reproduces well ab initio dependences of the energy on the volume and the vibrational density of states for all considered tetra- and octahedral crystalline phases of SiO$_2$. Furthermore, the combination of the evolutionary algorithm and the developed DeePMD potential has made it possible to reproduce the really observed crystalline structures of SiO$_2$. Such a good liquid–crystal portability of the machine learning interatomic potential opens prospects for the simulation of the structure and properties of new systems for which experimental information on crystalline phases is absent.
Funding agency Grant number
Russian Science Foundation 22-22-00506
This study was supported by the Russian Science Foundation (project no. 22-22-00506, https://rscf.ru/project/22-22-00506/).
Received: 11.11.2022
Revised: 31.01.2023
Accepted: 31.01.2023
English version:
Journal of Experimental and Theoretical Physics Letters, 2023, Volume 117, Issue 5, Pages 370–376
DOI: https://doi.org/10.1134/S0021364023600234
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. A. Balyakin, R. E. Ryltsev, N. M. Chtchelkachev, “Liquid–crystal structure inheritance in machine learning potentials for network-forming systems”, Pis'ma v Zh. Èksper. Teoret. Fiz., 117:5 (2023), 377–384; JETP Letters, 117:5 (2023), 370–376
Citation in format AMSBIB
\Bibitem{BalRylCht23}
\by I.~A.~Balyakin, R.~E.~Ryltsev, N.~M.~Chtchelkachev
\paper Liquid--crystal structure inheritance in machine learning potentials for network-forming systems
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2023
\vol 117
\issue 5
\pages 377--384
\mathnet{http://mi.mathnet.ru/jetpl6887}
\crossref{https://doi.org/10.31857/S1234567823050099}
\edn{https://elibrary.ru/pybaym}
\transl
\jour JETP Letters
\yr 2023
\vol 117
\issue 5
\pages 370--376
\crossref{https://doi.org/10.1134/S0021364023600234}
Linking options:
  • https://www.mathnet.ru/eng/jetpl6887
  • https://www.mathnet.ru/eng/jetpl/v117/i5/p377
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:89
    References:29
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024