|
This article is cited in 4 scientific papers (total in 4 papers)
CONDENSED MATTER
Inverse “foldover” resonance in an yttrium iron garnet film
Yu. M. Bunkova, P. M. Vetoshkoab, T. R. Safinc, M. S. Tagirovc a Russian Quantum Center, Skolkovo, Moscow, 143025 Russia
b Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, 125009 Russia
c Kazan Federal University, Kazan, 420008 Russia
Abstract:
Nonlinear magnetic resonance is studied in an in-plane magnetized yttrium iron garnet (YIG) film. For YIG films magnetized perpendicular to the plane, the effect referred to as the foldover resonance is well known. It arises because the precession frequency increases with the deviation of the magnetization. When the field is reduced, the frequency of the precession remains resonant because the demagnetizing field decreases with the deviation of the magnetization. The signal disappears when the radio frequency pump power is insufficient to maintain a nonequilibrium state of the system. In the in-plane magnetized yttrium iron garnet film, the precession frequency decreases with an increase in the pump amplitude. Accordingly, the foldover effect arises under an increase in the field. The fundamental difference is that the precession in the latter case should be unstable with respect to the decay into spin wave modes. The deviation angles of magnetization of about 10$^\circ$ are reached, and the rate of decay of the uniform precession into spin waves, which depends on the deviation angle of the magnetization, is measured. This study opens up another way of achieving the magnon density corresponding to the formation of its Bose–Einstein condensate.
Received: 24.11.2022 Revised: 05.01.2023 Accepted: 05.01.2023
Citation:
Yu. M. Bunkov, P. M. Vetoshko, T. R. Safin, M. S. Tagirov, “Inverse “foldover” resonance in an yttrium iron garnet film”, Pis'ma v Zh. Èksper. Teoret. Fiz., 117:4 (2023), 314–318; JETP Letters, 117:4 (2023), 313–316
Linking options:
https://www.mathnet.ru/eng/jetpl6877 https://www.mathnet.ru/eng/jetpl/v117/i4/p314
|
Statistics & downloads: |
Abstract page: | 48 | References: | 23 | First page: | 5 |
|