Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2023, Volume 117, Issue 1, Pages 72–79
DOI: https://doi.org/10.31857/S123456782301010X
(Mi jetpl6840)
 

CONDENSED MATTER

Unconventional fractional quantum hall states in a wide quantum well

S. I. Dorozhkina, A. A. Kapustina, I. B. Fedorova, V. Umanskyb, J. H. Smetc

a Osipyan Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia
b Department of Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
c Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany
References:
Abstract: A bilayer electron system that is formed in a $60$-nm-wide GaAs quantum well and has a large difference of the electron densities in the layers has been studied. It has been found that, when a magnetic field is tilted from the normal to the plane of the system, integer quantum Hall effect states at the filling factors of Landau levels of $1$ and $2$ disappear; instead, fractional quantum Hall effect states in the interval between these filling factors appear at the filling factors $\nu_F=4/3, 10/7$, and $6/5$ with odd denominators and at the filling factor $\nu_F=5/4$. Several different states can be observed under the variation of the magnetic field. The detected fractional quantum Hall effect states are interpreted as combined states with the same filling factor 1 in the layer with the higher density and with the filling factors $\nu_F-1$ in the layer with the lower density. These states are formed because of the redistribution of electrons between the layers, which occurs under the variation of the magnetic field. The appearance of the state with the filling factor $\nu_F=5/4$ with the even denominator is presumably attributed to the dominance of the interlayer electron–electron interaction over the intralayer one for electrons in the layer with the lower density.
Funding agency Grant number
Russian Science Foundation 22-22-00753
This work was supported by the Russian Science Foundation (project no. 22-22-00753, https://rscf.ru/project/22-22-00753/).
Received: 08.11.2022
Revised: 23.11.2022
Accepted: 24.11.2022
English version:
Journal of Experimental and Theoretical Physics Letters, 2023, Volume 117, Issue 1, Pages 68–74
DOI: https://doi.org/10.1134/S0021364022602974
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. I. Dorozhkin, A. A. Kapustin, I. B. Fedorov, V. Umansky, J. H. Smet, “Unconventional fractional quantum hall states in a wide quantum well”, Pis'ma v Zh. Èksper. Teoret. Fiz., 117:1 (2023), 72–79; JETP Letters, 117:1 (2023), 68–74
Citation in format AMSBIB
\Bibitem{DorKapFed23}
\by S.~I.~Dorozhkin, A.~A.~Kapustin, I.~B.~Fedorov, V.~Umansky, J.~H.~Smet
\paper Unconventional fractional quantum hall states in a wide quantum well
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2023
\vol 117
\issue 1
\pages 72--79
\mathnet{http://mi.mathnet.ru/jetpl6840}
\crossref{https://doi.org/10.31857/S123456782301010X}
\edn{https://elibrary.ru/nvsrmf}
\transl
\jour JETP Letters
\yr 2023
\vol 117
\issue 1
\pages 68--74
\crossref{https://doi.org/10.1134/S0021364022602974}
Linking options:
  • https://www.mathnet.ru/eng/jetpl6840
  • https://www.mathnet.ru/eng/jetpl/v117/i1/p72
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024