Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2010, Volume 91, Issue 6, Pages 339–345 (Mi jetpl681)  

This article is cited in 9 scientific papers (total in 9 papers)

METHODS OF THEORETICAL PHYSICS

Analytical approximation for single-impurity Anderson model

I. S. Krivenkoa, A. N. Rubtsova, M. I. Katsnel'sonb, A. I. Lichtensteinc

a Department of Physics, Moscow State University
b Radboud University
c Institut für Theoretische Physik, Universität Hamburg
References:
Abstract: We propose a new renormalized strong-coupling expansion to describe the electron spectral properties of single-band Anderson impurity problem in a wide energy range. The first-order result of our scheme reproduces well the entire single-electron spectrum of correlated impurity with the Kondo-like logarithmic contributions to the self energy and the renormalization of atomic resonances due to hybridization with conduction electrons. The Friedel sum rule for a half-filled system is fulfilled. The approach is based on so-called dual transformation, so that the series is constructed in vertices of the corresponding atomic Hamiltonian problem. The atomic problem of single impurity has a degenerate ground state, so the application of the perturbation theory is not straightforward. We construct a special approach dealing with symmetry-broken ground state of the atomic problem. The renormalization ensures a convergence near the frequencies of atomic resonances. Proposed expansion contains a small parameter in the weak- and in the the strong-coupling case and interpolates well in between. Formulae for the first-order dual diagram correction are obtained analytically in the real-time domain. A generalization of this scheme to a multi-orbital case can be important for the realistic description of correlated solids.
English version:
Journal of Experimental and Theoretical Physics Letters, 2010, Volume 91, Issue 6, Pages 319–325
DOI: https://doi.org/10.1134/S0021364010060123
Bibliographic databases:
Document Type: Article
Language: English
Citation: I. S. Krivenko, A. N. Rubtsov, M. I. Katsnel'son, A. I. Lichtenstein, “Analytical approximation for single-impurity Anderson model”, Pis'ma v Zh. Èksper. Teoret. Fiz., 91:6 (2010), 339–345; JETP Letters, 91:6 (2010), 319–325
Citation in format AMSBIB
\Bibitem{KriRubKat10}
\by I.~S.~Krivenko, A.~N.~Rubtsov, M.~I.~Katsnel'son, A.~I.~Lichtenstein
\paper Analytical approximation for single-impurity Anderson model
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2010
\vol 91
\issue 6
\pages 339--345
\mathnet{http://mi.mathnet.ru/jetpl681}
\transl
\jour JETP Letters
\yr 2010
\vol 91
\issue 6
\pages 319--325
\crossref{https://doi.org/10.1134/S0021364010060123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000278469100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952806738}
Linking options:
  • https://www.mathnet.ru/eng/jetpl681
  • https://www.mathnet.ru/eng/jetpl/v91/i6/p339
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
    Statistics & downloads:
    Abstract page:262
    Full-text PDF :90
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024